Zhang's Wikipedia

玩就玩大的

学术达人

1. 图像处理与计算机视觉 Software - Michael Elad’s Personal Page: 2. 机器学习与深度学习3. 全才 Honglak Lee

2016-12-06 21:14:01

阅读数:187

评论数:0

使用 matlab 数据集的生成(generate datasets)

一般手工生成的数据集(artificial datasets),通常用于实验部分最开始的演示和示意,用于对结果的一种精确计算和量化分析。1. Swiss/Helix/Twinpeaks/Broken Swiss(随机化数据集) 既然是某种随机化生成的数据集,自然依赖某种特定类型的随机变量。这...

2016-11-30 11:49:49

阅读数:4058

评论数:2

可视化利器 —— t-SNE(matlab toolbox 的使用与解释)

t-SNE – Laurens van der Maaten(感谢学术男神们的无私开源) User_guide.pdf(用户指南) 1. tsne 函数mappedX = tsne(X, labels, no_dims, init_dims, perplexity) tsne 是无监督降维技术,l...

2016-11-25 23:00:56

阅读数:7370

评论数:0

数学公式的规约(reduce)和简化(simplify)

to simplify notation, 1. 增广(augment) xi=[xi;1]\mathrm x_i=[\mathrm x_i;1],减少一个常数项; 2. 多个求和号 ∥x∥2=xTx\|x\|^2=x^Tx 向量 ⇒ 矩阵; 求和号本身也可化为向量矩阵运算; ∑in∥xi∥2=t...

2016-11-24 16:34:04

阅读数:1103

评论数:0

学术研究 —— 常用结论、说法

non-linear ⇒ linear 直接求解(较困难)⇒ iteration methodsAn×nx=bA_{n\times n}x=b:n 足够大时,x=A∖bx=A\backslash b将会变得是分困难,此时可以使用子空间迭代的方式,Kxi+1=Kxi+b−Axi Kx_{i+1}...

2016-11-18 23:09:30

阅读数:393

评论数:0

N+1:创新点的设计

1. 泛化在信号处理中,稀疏性频繁地应用于,求解如下最小化问题

2016-11-18 22:47:47

阅读数:865

评论数:0

作为学术用的 matlab

1. 可重复实验程序实现的所谓随机,并非完全的随机,而是由某一算法(或者再需要一个种子值)生成出来的。randn('state', 0)这是较老版本的用法,新版本的用法如下:>> rng('default') >> randn(1, 5) 0.5377 1.8339 ...

2016-11-18 00:16:44

阅读数:456

评论数:0

如何写作一篇优秀的学术论文

篇幅不够,图片来凑;篇幅不够,Conclusion & Discussion 来凑; 1. 可视化(visualization) Introduction 部分就要点出文章的创新性何在,当然配以一定的插图; 模型的框架图; 算法的流程图; 实验部分; 效果图; 折线图 准确率随着迭代次...

2016-11-17 18:41:59

阅读数:502

评论数:0

期刊(Journal)、会议(Conference)及其影响因子(Impact Factor)

1. 期刊 Journal of Sensors(Impact Factor 0.712) Journal of Electronic Imaging(Impact Factor*: 0.616;5-Year Impact Factor*: 0.840)

2016-11-17 10:38:54

阅读数:2513

评论数:0

罚函数(penalty function)的设计

1. encourage sparsity ℓ0\ell_0 范数: non-differentiable and difficult to optimize in general ℓ1\ell_1 范数: 对数约束,log(1+∥x∥2)\log(1+\|x\|^2)

2016-11-14 09:37:58

阅读数:2444

评论数:0

学术研究中的 NLP

1. baseline流程化的处理方式, 用 BoW 将 sentences 从 text 表示成 vector, LR 或者 SVM 做回归; LIBLINEAR – A Library for Large Linear Classification对于多分类问题,工业上一般会将其转换为 bin...

2016-11-04 18:42:04

阅读数:248

评论数:0

图像处理与计算机视觉的 topics

光学图像(optical image): the apparent reproduction of an object, formed by a lens or mirror system from reflected, refracted, or diffracted light waves....

2016-11-02 18:35:41

阅读数:498

评论数:0

算法模型的 Motivations

neurally-inspired biologically-inspired 1. CNN:biologically-inspiredCNN(Convolutional Neural Networks)是受生物学启发(biologically-inspired)的多层感知器(MLP)的变体(va...

2016-11-02 15:13:53

阅读数:353

评论数:0

神经网络、深度学习创新点的思考

从特征学习(Feature Learning)的观点来看,神经网络尤其是深度神经网络(也即是深度学习)是十分强大的特征学习方法。例如就可将 Autoencode 视为一种特征降维的方法。也正因如此,在经过深度学习模型(ANN、CNN、RNN、LSTM等模型)的训练之后,其实是学习到了一些很好的特征...

2016-11-02 11:21:10

阅读数:1484

评论数:0

图像处理结果的度量 —— SNR、PSNR、SSIM

衡量两幅图像的相似度: SNR/PSNR SSIM 1. SNR vs PSNRabout SNR 和 PSNR2. SSIMSSIM(structural similarity index),结构相似性,是一种衡量两幅图像相似度的指标。

2016-11-02 10:36:20

阅读数:3498

评论数:0

图像处理与计算机视觉的论文创新点总结(二)

算法的创新: 对以前的算法、模型进行修改和改进;(也就是吴军老师所说的,N+1。试想有没有那么一种可能,N-M+K,华山不是只有路一条,适当地回退,再重新出发) “新”的模型和算法,属于另辟蹊径;当然也算不上严格意义上的“全新”,也不是基础性原理性的转变,不是缝缝补补的工作,而是开辟了新的路径;

2016-10-31 09:41:23

阅读数:677

评论数:0

HistCite 引文分析软件的利器

所需工具及网站清单, HISTCITE:DOWNLOAD YOUR FREE COPY.提交自己的基本信息即可,十分简单; SCI数据库官网(web of science):http://apps.webofknowledge.com/WOS 库,最终 HistCite 所要分析的正是从 WOS ...

2016-10-28 11:31:03

阅读数:643

评论数:0

论文写作的句型

1. introduction 介绍领域间关系, Deep Learning is a new area of Machine Learning research, which has been introdcued with ….

2016-10-25 12:10:54

阅读数:314

评论数:0

论文的发表流程、会议的组织流程

protocol:实验流程; highlights:重点(待强调的重点);

2016-10-22 22:27:07

阅读数:480

评论数:0

学术论文写作的 paper、code 资源

1. 计算机视觉 Kristen Grauman :有重要期刊会议的文章,有 matlab 和 C++ 代码,有数据;学术达人,一年7篇CVPR和4篇ICCV——又一个超级女孩

2016-10-20 09:02:04

阅读数:514

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭