Zhang's Wikipedia

玩就玩大的

多边形的研究

1. 正六边形的内角如图示, 正六边形可划分为 4 个三角形,故全部内角和为 4*180°=720°,根据对称性原理,各个内角则分别为:720/6 = 120°。

2017-04-15 11:52:23

阅读数:344

评论数:0

图形的认识(curve,surface,hypersurface)

平滑函数(smooth function): curve:曲线; 二维平面; surface:曲面; 三维空间; hypersurface:超曲面; 更高维度; 1. surface是对平面的泛化,不必像平面(plane)那样,曲率(curvature)为 0。

2016-11-09 14:07:08

阅读数:1677

评论数:2

圆上的定理 —— 圆周角定理与相交弦定理

相交弦定理的证明需要用到圆周角定理。

2016-09-16 11:42:03

阅读数:1871

评论数:0

三角函数相关证明

三角形内角与边长及外接圆半径之间的关系;

2016-09-10 20:46:25

阅读数:617

评论数:0

三角形外接圆与内切圆

0. 直角三角形直角三角形天然地对应着一个外接圆,外接圆的圆心在斜边的中点处,斜边上的高最大为斜边的一半; 1. 外接圆 与多边形各顶点都相交的圆叫做多边形的外接圆。 三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。 (而不是角平分线的交点)...

2016-09-10 20:36:10

阅读数:1746

评论数:0

长方体的研究

三个边长(长 > 宽 > 高)确定一个长方体 1. 底面积与侧面积一个长方体的盒子,底面积是 120 cm²,侧面积是 96 cm²,另一侧是 80 cm²,求其长宽高。 底面积(ab)* 较大侧面积(ac)/较小侧面积(bc)=长的平方 120*96/80 = 144 ⇒ a ...

2016-08-10 11:09:20

阅读数:360

评论数:0

几何总论

正四面体就是正三棱锥 1. 体积与表面积 相同体积,正三棱锥形状表面积最大,圆球的表面积最小; 相同表面积,球形状体积最大,正三棱锥形状体积最小; 当从高处连续倒一杯水,水柱下降到一定高度也会分裂成一滴一滴(圆球状)的水。原因是空气阻力与水的表面张力之间关系。相同体积球状水滴的表面积小,形成表面相...

2016-08-09 17:02:18

阅读数:667

评论数:0

圆锥与圆柱

圆锥体积公式:V=13sh V=\frac13sh 公式中s为圆锥底面面积,h为圆锥的高。 一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。 1. 圆锥正圆锥可以定义为一个直角三角形绕其中一条直角边旋转一周得到的几何体,这个直角三角形的斜边称为圆锥的母线。圆锥面积公式:πrℓ=1...

2016-08-05 17:24:51

阅读数:497

评论数:0

常见几何图形

1. 圆柱圆柱表面积公式:S=2πrh+2πr2 S=2\pi r h+2\pi r^2

2016-07-20 17:13:43

阅读数:645

评论数:0

平行四边形的研究

1. 平行四边形的三角形平行四边形内的三角形(或者说,平行四边形限定的三角形)不超过平行四边形面积的一半。

2016-07-13 19:13:09

阅读数:343

评论数:0

三角形的研究

1. 中线证明:直角三角形的中线是斜边的一半;证:直角三角形 △\triangle ABC,A 是直角顶点,作辅助线:取 AB 边上的中点,便可证明。2. 面积 (1)相似三角形的面积比是相似比的平方;底和高均为1/2

2016-07-13 18:59:26

阅读数:665

评论数:0

从球面几何到非欧几何

1. 球面几何如果将球面上的大圆视为直线,那么球面上的几何就展现了一种椭圆几何。 在这种几何中,任何两条直线都相交,而且交于两个交点; 三角形内角和大于180°(两条经线分别与赤道交于A,B,和北极交于 C),两条经线均垂直于赤道; 也是在平面几何中,两条经线(最大的圆周)在赤道上看来是平行的...

2016-06-22 17:21:16

阅读数:1052

评论数:0

椭圆基本概念、定理及性质

行星的公转轨道是椭圆; 0. 椭圆基本概念0.1 长轴(Major axis) 穿过两焦点并终止于椭圆上的线段 AB 叫做长轴。 长轴是通过连接椭圆上的两个点所能获得的最长线段。1. 椭圆与天文1.1 半长轴(Semi Major Axis)半长轴是椭圆(行星公转轨道)长轴的一半长,长轴是...

2016-06-22 15:19:04

阅读数:2512

评论数:0

Euler 的面(Face,F)、顶(Vertex,V)、棱(Edge,E)公式

F、V、E 分别代表一个凸多边形的面数、顶点数和棱数。通过对四面体、六面体、六棱锥以及六棱柱的观察,可归纳出一个一般性的结论为:F+V−E=2 F+V-E=2 进一步我们需验证其合理性:设想多面体某一面外增加一点 A 和该面(比如说有 k 个顶点的面)的各顶点联结起来, 增加了 k 个棱 增加了 ...

2016-06-20 21:16:11

阅读数:835

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭