Zhang's Wikipedia

玩就玩大的

常见反函数、反函数导数(微分)公式

0. 反函数基本认识 互为反函数之反函数的相互性:g(x)g(x) 是 f(x)f(x) 的反函数,则 f(x)f(x) 也是 g(x)g(x) 的反函数; f(g(x))=xf(g(x))=x, g(f(x))=xg(f(x))=x 1. 反函数导数公式MORE RULES FOR DERI...

2017-09-16 17:12:40

阅读数:9447

评论数:0

样条函数(spline function)—— 分段多项式函数(piecewise polynomial function)

1. 分段多项式函数 样条函数是某种意义上的分段函数。 Spline (mathematics) - Wikipedia最简单的样条函数是一种分段多项式函数(piecewise polynomial function),样条函数 S:[a,b]→RS:[a, b]\rightarrow \ma...

2017-07-21 19:17:31

阅读数:4964

评论数:0

二重积分的计算 —— 交换积分顺序(exchange the order of integration)

交换积分顺序的诀窍在数形结合; 1. 几句顺口溜 后积先定限,限内穿条线,先交下限写,后交上限见 先积 x,画横线(平行于 x 轴),右减左; 先积 y,画竖线(平行于 y 轴),上减下; 2. 简单举例Examples of changing the order of integration ...

2017-07-20 15:50:08

阅读数:7859

评论数:0

单位阶跃函数(Heaviside/unit step function)—— 化简分段函数

注意,单位阶跃函数一种不连续函数。1. 常见定义 最经典的定义来自于 Ramp function(斜坡函数,max{x,0}\max \{x,0\})的微分形式;

2017-05-13 17:20:20

阅读数:2953

评论数:0

正割函数(sec)

1. 定义正割与余弦互为倒数,余割与正弦互为倒数。即:⎧⎩⎨⎪⎪⎪⎪secθ=1cosθcscθ=1sinθ \left\{ \begin{split}\secθ=\frac1{\cosθ} \\\cscθ=\frac1{\sinθ} \end{split} \right. 也即在几何上,设 ...

2017-02-22 10:05:02

阅读数:7930

评论数:0

数学辨异 —— 泰勒展开与等比数列求和

11−x \frac{1}{1-x} 1. 泰勒展开根据:(1+z)α=1+αz+α(α−1)2!z2+α(α−1)(α−2)3!z3+⋯+α(α−1)⋯(α−n+1)n!zn+⋯,|z|<1 \left(1+z\right)^\alpha=1+\alpha z+\frac{\alpha\l...

2017-01-18 13:16:42

阅读数:1182

评论数:0

原函数与反函数

1. 反函数存在定理严格单调函数(比如 cdf,累积分布函数)必定有严格单调的反函数,并且二者单调性相同。2. 反函数性质 函数 f(x)f(x) 与它的反函数 f−1(x)f^{-1}(x) 图象关于直线 y=xy=x 对称;

2016-12-18 12:54:12

阅读数:1690

评论数:0

不定积分

1. 定义∀x∈I\forall x\in I(II 表区间),都有 F′(x)=f(x)F'(x)=f(x),则称 F(x)F(x) 是 f(x)f(x) 在 II 上的一个原函数;∫f(x)dx=F(x)+c \int f(x)dx=F(x)+c 从多个方面去理解同一个定义概念本身,才算得上真...

2016-11-22 00:52:59

阅读数:339

评论数:0

从傅里叶级数到傅里叶变换

1. 傅里叶级数傅里叶级数的关键词是正交,正交,正交; 第一式,第四式,第五式:积分函数都为偶函数,在对称区间上,为单侧区间的二倍,尽管如此,考虑三角函数的特殊性,就是在单侧区间,其值仍为 0;

2016-11-14 00:43:12

阅读数:792

评论数:0

求导的训练

1. 求导

2016-11-13 12:47:59

阅读数:699

评论数:0

中值定理

f(x)f(x) 在闭区间 [0,1][0, 1] 上,f(0)=0,f(1)=π4f(0)=0, f(1)=\frac\pi4,证明存在 ξ\xi 使得 (1+ξ2)f′(ξ)=1(1+\xi^2)f'(\xi)=1令 F(x)=f(x)−arctanxF(x)=f(x)-\arctan x,所...

2016-11-12 00:20:22

阅读数:614

评论数:0

不可积分的函数、定积分可积不可积

1. 不可积分不可积分函数正态分布函数的密度函数是不可积的,虽然它的原函数(即不定积分)存在,但不能用初等函数表达出来。习惯上,如果一个已给的连续函数的原函数能用初等函数表达出来,就说这函数是“积得出的函数”,否则就说它是“积不出”的函数。比如下面列出的几个积分都是属于“积不出”的函数,但是这些积...

2016-11-10 21:03:55

阅读数:6218

评论数:0

可积的判定(充分条件,必要条件)

1. 必要条件 若函数 ff 在 [a, b] 上可积,则 ff 在 [a, b] 上必有界; 反证法,逆否命题,无界 ⇒ 不可积; 若 ff 在 [a, b] 上无界,则对于 [a, b] 的任一分割 T,比存在属于 T 的某个小区间 Δk\Delta_k,ff 在 Δk\Delta_k 上无...

2016-11-10 19:25:52

阅读数:2665

评论数:0

多元函数(multivariate function)分析(方向导数和梯度)

1. 方向导数与梯度 2. 几种特殊类型的函数的梯度公式

2016-11-10 12:37:03

阅读数:1886

评论数:0

函数的微分表

1. 初等函数反三角函数: f(x)=arctanxf(x)=\arctan x ⇒ f′(x)=11+x2f'(x)=\frac{1}{1+x^2}

2016-11-09 15:08:55

阅读数:373

评论数:0

零点定理、介值定理

介值定理,也叫中间值定理。

2016-11-08 13:10:19

阅读数:2655

评论数:0

数列收敛与数列极限

sequence,数列;series,级数(对数列求和) 单调有界函数必收敛; 单调增有上界,收敛; 单调减有下界,收敛; 1. 有趣的序列 不单调但收敛;

2016-11-07 23:59:00

阅读数:736

评论数:0

张量(tensor)的理解

1. 从标量到矢量:携带更丰富的信息 矢,是箭的意思,突出的特点是其指向性。袋子里有几个球? 3 个,magnitude(幅度,没有单位); 从这到你家多远?3 km(denominate),3 称为 scalars,标量,或叫纯量; 从这如何到达你的家里?步行 3km,显然是不够的,除了距离...

2016-11-06 10:14:11

阅读数:4673

评论数:0

极限的求法

1. 0/0 洛必达

2016-10-28 15:24:03

阅读数:322

评论数:0

斯托克斯定理(Stokes' theorem)

1. 几种形式

2016-10-24 23:09:28

阅读数:2658

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭