Zhang's Wikipedia

玩就玩大的

线与面

1. 两点确定一条直线

2016-10-11 21:50:15

阅读数:266

评论数:0

直线向量方程

1. 共线向量定理对空间中任意两个向量,a⃗ \vec a、b⃗ \vec b(b⃗ ≠0\vec b\neq 0),a⃗ ∥b⃗ \vec a\parallel \vec b 是存在唯一的实数 λ\lambda,使 a⃗ =λb⃗ \vec a=\lambda \vec b2. 共面向量定理如果...

2016-09-23 11:57:44

阅读数:1047

评论数:0

初等解析几何

1. 直线

2016-09-23 09:52:23

阅读数:292

评论数:0

自反馈与 Mandelbrot set

zn+1=z2n+c z_{n+1}=z_n^2+c Mandelbrot set - Wikipedia, the free encyclopedia

2016-07-28 23:58:42

阅读数:343

评论数:0

三角数数列

1+2+⋯+n=n(n+1)2 1+2+\cdots+n=\frac{n\left(n+1\right)}2

2016-07-25 11:59:46

阅读数:361

评论数:0

卵形线

1. 笛卡尔卵形线1.1 定义A,B是平面内两个定点,平面内满足m*PA+n*PB=b(b是定长,m,n是两个固定正数)的点P的轨迹称为笛卡儿卵形线。1.2 光学性质选取适当的 m,n 值,可使通过点 A 的光线经折射后,全部通过点 B。笛卡尔曾利用这个光学性质,选取笛卡尔卵形线作为透镜的截面形状...

2016-07-22 21:04:56

阅读数:1126

评论数:0

抛物线与双曲线、抛物面与锥面

1. 抛物线 抛物线的广义定义:二次方程(xx的二次方程,yy 的二次方程)所表示的方程就是抛物线,向上开口(y≥0y\geq 0):x2=2py x^2=2py 向右开口(x≥0x\geq 0)y2=2px y^2=2px 2. 抛物面与圆锥面由抛物线绕其对称轴旋转而成。

2016-07-22 16:27:19

阅读数:851

评论数:0

解析几何 —— 球

注意区分:球体和球面,就好比需要区分:圆形区域和圆一样; 球面的形成:到一个定点距离相等的所有点形成一个球面; 到两个定点距离相等的所有点则是两个球面的交集,即一个圆; 球面上的圆周总可以被理解为:圆锥面和球面相切的交线;

2016-07-06 12:44:04

阅读数:754

评论数:0

平方与勾股定理

1. 熟记平方数 292=84129^2=841292=(30−1)2=302−60+1=841 29^2=(30-1)^2=30^2-60+1=841 2. 常用直角三角形的三边长

2016-07-03 10:37:59

阅读数:469

评论数:0

解析几何 —— 圆

圆:无限多边的多边形; 1. 圆的方程圆的标准方程:在平面直角坐标系中,以点 O(a,b)O(a,b)为圆心,以 rr 为半径的圆的标准方程是(x−a)2+(y−b)2=r2(x-a)^2+(y-b)^2=r^22. 重要解题性质只需要知道圆心位置,以及任意圆周上的一点坐标,便可确定圆的方程,通过...

2016-07-03 10:32:07

阅读数:1000

评论数:0

解析几何 —— 经典题解

1. 求正方形内接圆的半径 点 (9,8)(9, 8) 在圆上,仅根据该点,我们即可求解圆的标准方程:(9−r)2+(8−r)2=r2 (9-r)^2+(8-r)^2=r^2 解得 r=29r=292. 交点仅与高度有关有两根电线,一头分别固定在两根杆子的顶部,另一头固定在对方杆子的低端。求...

2016-07-03 10:05:58

阅读数:430

评论数:0

解析几何 —— 椭圆

1. 椭圆的定义及其标准方程设在平面上给定了两个点 F1F_1 和 F2F_2,它们之间的距离是 2c(c>0)2c\left(c>0\right)。我们来求到 F1F_1 和 F2F_2 的距离之和是一个常数 2a(a>c)2a\left(a>c\right) 的点 MM...

2016-06-22 17:05:58

阅读数:602

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭