Zhang's Wikipedia

玩就玩大的

Topological Spaces(拓扑空间)

拓扑空间的定义有多种形式,通过 open sets(开集)的形式定义是最为常见的拓扑空间定义形式。

2017-04-25 11:51:44

阅读数:877

评论数:0

open ball、closed ball 与 open set、closed set(interior point,limit point)、dense set

在拓扑学上,open set(开集)是对实数轴(real line)上开区间(open interval)的拓展。 红色圆盘,蓝色圆圈 红色点集即为一种 open set,蓝色点集则为 boundary set, 红色点集和蓝色点集的并构成

2017-04-25 11:02:37

阅读数:2893

评论数:0

绘图的艺术

1. 三维的展现 三维的展现,借助于阴影;

2016-08-29 18:19:44

阅读数:378

评论数:0

拓扑学(代数拓扑学)的有趣应用

代数几何学又是一次数形结合的典范,一次从现象到本质的探索。 1. 绳子谜题 墙有两个钉子, 按照通常的方法将画挂上去,如图所示,当一个钉子掉下 来时, 画还会挂在另一个钉子。问题: 如何将画挂起来,使得拔掉其中任何一个钉子, 画就会掉下来? 顺时针缠绕第一个钉子一周记作a,逆时针缠绕...

2016-08-27 11:52:49

阅读数:3280

评论数:0

多面体的研究

1. 四面体 四面体,也叫三棱锥; 但正三棱锥不等于正四面体; 正四面体必须每个面都是正三角形 正三棱锥是锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥。 四面体有 4 个顶点(Vertex),也显然都有 4 个面,4 个顶点的任意 3 个点都可以构成一个面,也即:(43)=4 \bi...

2016-08-27 11:11:03

阅读数:570

评论数:0

拓扑学初步

0. 基本概念 & 定义 同胚:在拓扑学中,两个流形,如果可以通过弯曲、延展、剪切(只要最终完全沿着当初剪开的缝隙再重新粘贴起来)等操作把其中一个变为另一个,则认为两者是同胚的。如:圆和正方形是同胚的(8 与 B 也是同胚的),而球面和环面就不是同胚的。 考虑三个物体,碗、杯子(带柄)、甜...

2016-08-25 15:27:53

阅读数:1664

评论数:0

哥尼斯堡七桥问题

如下的七座桥: 1735 年,大数学家欧拉证明,不存在这样一条线路。并概念性的意识到: 桥梁之间距离是无关(有关时,施以权重) 真正重要的是桥梁如何连接的; 这正是拓扑学。拓扑学意义上的简化,将 A、B 两座岛,缩为一点,两岸也分别缩为一点,如下图所示,这样既简化了问题,也不会影响问题的求解...

2016-07-28 00:14:54

阅读数:3098

评论数:1

提示
确定要删除当前文章?
取消 删除
关闭
关闭