Zhang's Wikipedia

玩就玩大的

一题多解 —— 判断一个数是否为奇数

对 2 取模,是否为 1?(负奇数对 2 取模,为 -1) jshell> 5 % 2 $1 ==> 1 jshell> -5 % 2 $2 ==> -1 同 1 相与; jshell&...

2018-09-05 22:23:50

阅读数:421

评论数:0

【换句话说】【等价描述】—— 定义及概念的不同描述

1. 二叉树 普通定义:在计算机科学中,二叉树是每个结点最多有两个子树(≤2≤2\leq 2,节点没有子树,节点有一个子树,节点有两个子树)的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。 递归定义:二叉树 TTT 是定义在有限节点集上...

2018-08-01 08:30:44

阅读数:696

评论数:0

【证明】【一题多解】布尔不等式(union bound)的证明

布尔不等式(Boole’s inequality)也叫(union bound),即并集的上界,描述的是至少一个事件发生的概率(P(⋃iAi)P(⋃iAi)\mathbb{P}\left(\bigcup_i A_i\right))不大于单独事件(事件之间未必独立)发生的概率之和(∑iP(Ai)∑i...

2018-07-30 23:11:59

阅读数:1464

评论数:0

【证明】【一题多解】【等价转换】—— 排列组合的计算

1. 组合数的等价转换 递推关系(降低规模): ⎧⎩⎨⎪⎪⎪⎪⎪⎪(nk)=nk(n−1k−1)(nk)=nn−k(n−1k){(nk)=nk(n−1k−1)(nk)=nn−k(n−1k) \left\{ \begin{split} &\binom{n}{k}=\fra...

2018-07-26 20:36:37

阅读数:958

评论数:0

【证明】【一题多解】—— 负梯度方向的证明

1. 一节泰勒展开 负梯度方向即为(以矢量形式为例):dk=−g(xk)dk=−g(xk)\bf{d_k}=-g(x_k) f(xk+λdk)≈f(xk)+λgT(xk)dkf(xk+λdk)≈f(xk)+λgT(xk)dk f({x_k}+\lambda d_k)\approx f(x_...

2018-07-26 12:37:51

阅读数:973

评论数:0

【一题多解】平方根的计算及完全平方数的判断

1. 平方根的计算 使用 Babylonian method 方法(https://en.wikipedia.org/wiki/Methods_of_computing_square_roots)进行计算: def babylonian(s, x0, n_iter): x = x0...

2018-07-16 23:26:30

阅读数:1184

评论数:0

【一题多解】Python 字符串逆序

https://blog.csdn.net/seetheworld518/article/details/46756639 https://blog.csdn.net/together_cz/article/details/76222558 1. 使用索引 >&...

2018-07-15 22:32:07

阅读数:1161

评论数:0

【证明】【一题多解】 —— 等比数列

1. 等比数列前 n 项和 1+x+x2+⋯+2n=1−xn+11−x1+x+x2+⋯+2n=1−xn+11−x 1+x+x^2+\cdots+2^n=\frac{1-x^{n+1}}{1-x} 证明过程如下: 1−xn+1=1−xn+1(1−x)=1−xn+1=1−xn+1(1−x)...

2018-06-03 17:26:50

阅读数:582

评论数:0

一题多解 —— linux 日志文件(log)reload 重新载入

1. tail -F 等同于–follow=name –retry,根据文件名进行追踪,并保持重试,即该文件被删除或改名后,如果再次创建相同的文件名,会继续追踪 也即可以间接实现从日志文件末尾,不断载入显示的过程; 2. vim 命令模式下::e :e!:重新载入,忽略已经进行的修改;

2017-09-27 23:16:01

阅读数:318

评论数:0

一题多解 —— 同时找到序列的最大值最小值

1. 普通方法分别独立地找出最小值和最大值,则在 nn 个元素中,各需要 n−1n-1 次比较,共需 2n−22n-2 次比较。如对于最小值问题:MINIMUM(A) 1 MIN = A[1] 2 for i = 2 to A.length 3 if A[i] < MIN...

2017-07-20 09:46:22

阅读数:406

评论数:0

一题多解 —— 二项式分布的期望和方差的计算

1. 定义法2. 指示器变量(Indicator variable)定义随机变量 xi∼b(1,μ)x_i\sim b(1, \mu),xi,i=1,2,…,Nx_i, i=1,2,\ldots,N 彼此独立同分布,由相互独立的随机变量,以相互独立的随机变量 x,zx, z 为例,证明见 随机变量...

2017-07-19 23:02:17

阅读数:1814

评论数:0

一题多解 —— $?(命令返回状态)的检验

使用 $? 对命令进行执行状态的校验:command if [ "$?"-ne 0]; then echo "command failed"; exit 1; fi 可被替换为: 方式之一:利用逻辑表达式的骤死式语义...

2017-07-11 11:25:06

阅读数:182

评论数:0

一题多解 —— python ndarray 的 value_counts

1. np.expand_dims

2017-04-29 20:53:26

阅读数:543

评论数:0

一题多解(八)—— 矩阵上三角(下三角)的访问

访问矩阵的上三角或者下三角,一般出现在矩阵为对角方阵(避免重复访问)的情况: 方法之一:for i in range(n): for j in range(i+1): ... 方法之二:for i in range(n): for j in range(n): ...

2016-12-08 11:24:38

阅读数:672

评论数:0

一题多解(七)—— 取两数的最大值

法一:使用自带的 max 函数 法二:三目运算符;x = a > b ? a : b; 法二:使用布尔运算(返回 0/1)x = (a>b)*a + (b>=a)*b;

2016-11-17 23:58:30

阅读数:525

评论数:0

算法 Tricks(六)—— 判断一个数是否为完全平方数

int(sqrt(n)) * int(sqrt(n)) == n ? 1:0;

2016-11-17 17:29:32

阅读数:2654

评论数:0

一题多解(六)—— 一个数二进制形式 1 的个数

1. n & n-1 2. 递归

2016-10-16 12:54:50

阅读数:317

评论数:0

一题多解(五) —— topK(数组中第 k 大/小的数)

根据对称性,第 k 大和第 k 小,在实现上,是一致的,我们就以第 k 小为例,进行说明:

2016-09-27 21:59:09

阅读数:452

评论数:0

一题多解(四)—— 数组中唯一出现 2 次的数

更具体地讲,某数组长度为 N+1(乱序),整个数组取遍 1~N 的全部 N 个数,显然其中一个数出现了两次,找出这个数; (1)将这 N + 1 个数,以及 1 ~ N 这 N 个数(数组中出现 2 次 ⇒ 出现三次),整体异或,最终得到的结果即为这个出现两次的数; (2)全部相加 - (1+N)...

2016-09-24 13:40:02

阅读数:382

评论数:0

一题多解(三)—— Python 字符串的拼接

1. formatdef event_log(name, time): print('Event: {}, happens at {}'.format(name, str(time)))2. 使用 + 连接符def event_log(name, time): print('Eve...

2016-08-31 10:13:55

阅读数:334

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭