Zhang's Wikipedia

玩就玩大的

【等价变换】—— 指数对数函数

e=10log10e=101/ln10e=10log10⁡e=101/ln⁡10 e=10^{\log_{10} e}=10^{1/\ln 10} 因此有: ex=10x/ln10ex=10x/ln⁡10 e^x=10^{x/\ln 10}

2018-08-12 11:59:34

阅读数:443

评论数:0

【等价转换】—— 整数的变换

1. 整数与幂的关系 n=2m+ℓn=2m+ℓ n=2^m+\ell 其中 2m2m2^m 是不超过 nnn 的 2 的最大次幂; 2m≤n<2m+12m≤n<2m+12^m\leq n\lt 2^{m+1} ℓ<2mℓ&...

2018-08-08 21:29:00

阅读数:258

评论数:0

【证明】—— 矩阵秩的相关证明

1. 列满秩矩阵 If A is full column rank, then ATA is always invertible 如果 Am×nAm×nA_{m\times n} 为列满秩,则 ATAATAA^TA 为可逆矩阵。 证:可逆矩阵要求 ATAx=0ATAx=0A^TAx=0 时 ...

2018-08-06 22:26:43

阅读数:814

评论数:0

【证明】—— 二叉树的相关证明

1. 数学归纳法 Proof that a binary tree with n leaves has a height of at least log n 高度为 nnn 的二叉树,叶子结点不多于 2n2n2^n。 数学归纳法,证明三部曲: n=0n=0n=0,只有一个根节点,则叶子结...

2018-08-01 23:49:27

阅读数:802

评论数:0

【证明】【一题多解】布尔不等式(union bound)的证明

布尔不等式(Boole’s inequality)也叫(union bound),即并集的上界,描述的是至少一个事件发生的概率(P(⋃iAi)P(⋃iAi)\mathbb{P}\left(\bigcup_i A_i\right))不大于单独事件(事件之间未必独立)发生的概率之和(∑iP(Ai)∑i...

2018-07-30 23:11:59

阅读数:1353

评论数:0

【等价转换】—— min/max 的转换与互相转换

0. min 与 max 的转换 {max(X,Y)=X+Y−min(X,Y)min(X,Y)=X+Y−max(X,Y){max(X,Y)=X+Y−min(X,Y)min(X,Y)=X+Y−max(X,Y) \left\{ \begin{split} &\max \lef...

2018-07-28 08:33:20

阅读数:1080

评论数:0

奇妙的证明 —— 0! = 1(a^0=1)

1. 0!=1 (n−1)!=n!n(n−1)!=n!n \left(n-1\right)!=\frac{n!}{n} 则: 0!=1!1=10!=1!1=1 0!=\frac{1!}{1}=1 2. a^0=1 an−1=anaan−1=ana a^{n-1}=\frac{a^n}...

2018-07-05 23:04:55

阅读数:1302

评论数:0

【证明】—— 斐波那契

1. 黄金分割率与其共轭数x+1=x2⇒⎧⎩⎨⎪⎪⎪⎪ϕ=1+5√2ϕ^=1−5√2 x+1=x^2 ⇒ \left\{ \begin{split} \phi=\frac{1+\sqrt5}{2}\\ \hat\phi=\frac{1-\sqrt5}{2} \end{split} \right. ...

2017-07-30 10:55:04

阅读数:188

评论数:0

数学归纳法证明时间复杂度

1. T(n)=1+∑j=0n−1T(j)T(n)=1+\sum\limits_{j=0}^{n-1}T(j)欲证明 T(n)=2nT(n)=2^n(为了简化问题的方便,这里忽略了问题的背景信息,边界条件:T(0)=1T(0)=1)。已知边界条件:T(0)=20=1T(0)=2^0=1,由数学归纳...

2017-07-26 14:33:10

阅读数:433

评论数:0

红黑树相关定理及其证明

红黑树有一条性质要求:如果一个节点为红色的,则它的两个子节点都是黑色。这保证了:从根到叶节点(不包括根节点)的任何一条路径上都至少有一半的节点是黑色的。(红黑树的性质还要求:对每一个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点)。0. 明确一些基本概念 树的深度和高度: ...

2017-07-23 12:40:32

阅读数:1159

评论数:1

【概率证明】—— sum and product rules of probability

1. sum and product rules of probability⎧⎩⎨p(x)=∫p(x,y)dyp(x,y)=p(x|y)p(y) \left\{ \begin{split} &p(x)=\int p(x, y)dy\\ &p(x,y)=p(x|y)p(y) \en...

2017-07-21 18:35:07

阅读数:493

评论数:0

Beta 分布归一化的证明(系数是怎么来的),期望和方差的计算

1. Γ(a+b)Γ(a)Γ(b)\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}:归一化系数Beta(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1 \text{Beta}(\mu|a,b)=\frac{\Gamma(a+b)}{\Gamma(a)...

2017-07-21 15:17:09

阅读数:4355

评论数:0

随机变量统计独立性的相关证明

1. 和的期望和方差两随机变量 x,z 统计独立,证明下列两个等式:

2017-07-19 16:38:53

阅读数:1427

评论数:0

均匀分布(uniform distribution)期望的最大似然估计(maximum likelihood estimation)

maximum estimator method more known as MLE of a uniform distribution[0,θ][0, \theta] 区间上的均匀分布为例,独立同分布地采样样本 x1,x2,…,xnx_1, x_2, \ldots, x_n,我们知均匀分布的期望...

2017-07-12 15:26:50

阅读数:6621

评论数:0

数学归纳法在数据结构与算法分析设计中的应用

最简单和常见的数学归纳法是证明当n等于任意一个自然数时某命题成立。证明分下面两步: 证明当 n= 1 时命题成立。 假设 n=m 时命题成立,那么可以推导出在 n=m+1 时命题也成立。(m代表任意自然数) 1. 图 设 G=(V, E) 为一个有向图或无向图,假定 BFS 以给定结点 s∈Vs\...

2017-07-01 19:46:31

阅读数:404

评论数:0

open ball、closed ball 与 open set、closed set(interior point,limit point)、dense set

在拓扑学上,open set(开集)是对实数轴(real line)上开区间(open interval)的拓展。 红色圆盘,蓝色圆圈 红色点集即为一种 open set,蓝色点集则为 boundary set, 红色点集和蓝色点集的并构成

2017-04-25 11:02:37

阅读数:2758

评论数:0

等价变换(equivalent transformation)

1. 加加减减

2017-04-24 22:20:20

阅读数:534

评论数:0

勾股定理 —— 证明大全

a2+b2=c2 a^2+b^2=c^2 2002 年北京召开的世界数学大会,会徽如下: c2=4⋅12ab+(b−a)2⇒c2=a2+b2 c^2=4\cdot \frac12ab+(b-a)^2 ⇒ c^2=a^2+b^2 1. 不同分割方法 构造两个边长为 a+ba+b 的正方形...

2017-04-11 11:14:56

阅读数:520

评论数:0

Gibbs 采样定理的若干证明

坐标平面上的三点,A(x1,y1),B(x1,y2),C(x2,y1)A(x_1,y_1),B(x_1,y_2),C(x_2, y_1),假设有概率分布 p(x,y)p(x,y)(P(X=x,Y=y)P(X=x,Y=y) 联合概率),则根据联合概率与条件概率的关系,则有如下两个等式:

2017-04-03 14:46:49

阅读数:669

评论数:0

二项式定理等价变换与简单推论

本文主要有关二项式定理的有个相关证明。

2017-01-18 21:15:44

阅读数:337

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭