Zhang's Wikipedia

玩就玩大的

排序:
默认
按更新时间
按访问量
RSS订阅

python hdf5 —— h5py

HDF(Hierarchical Data File)是美国国家高级计算应用中心(NCSA,National Center for Supercomputer Applications)为了满足各种领域研究需求(能适应不同科研领域所产生和依赖的数据的研究)而研制的一种能高效存储和分发科学数据的新型...

2017-07-08 09:36:46

阅读数:828

评论数:0

TFRecord —— tensorflow 下的统一数据存储格式

tensorflow 提供了统一的数据存储格式,即 TFRecord(record 表示记录),以提高程序的可扩展性,当数据来源十分复杂时,仍能有效记录输入数据中的信息。1. tfrecord 使用流程比如对于 mnist 训练数据集,我们要将其 label 和像素内容以 TFRecord 的形式...

2017-05-25 10:33:59

阅读数:1026

评论数:0

TensorFlow 语法及常用 API

1. tf.nn.conv2d 的参数 padding=’SAME’ ⇒ 卷积之前的大小和卷积之后的大小一致,默认使用全 0 填充; padding=’VALID’ ⇒ 也即仅适用其有效部分,而不使用填充其他值;

2017-05-19 18:27:55

阅读数:716

评论数:0

TensorFlow 学习(十五)—— tensorflow.python.platform

tensorflow.python.platform 下的常用工具类和工具函数:

2017-05-01 12:19:07

阅读数:4194

评论数:0

tensorflow:图(Graph)的核心数据结构与通用函数(Utility function)

Tensorflow一些常用基本概念与函数(2) 1. 图(Graph)的核心数据结构 tf.Graph.__init__:建立一个空图; tf.Graph.as_default():一个将某图设置为默认图,并返回一个上下文管理器,常与 with 结构相搭配

2017-04-26 12:53:05

阅读数:1897

评论数:0

TensorFlow 学习(十四)—— contrib 与 slim

1. tensorflow.contrib.layers tf.contrib.layers.xavier_initializer():一种经典的权值矩阵的初始化方式;

2017-03-26 12:42:24

阅读数:6211

评论数:1

TensorFlow 学习(十三)—— tf.app.flags

flags = tf.app.flags FLAGS = flags.FLAGS

2017-03-25 23:04:25

阅读数:5148

评论数:2

keras + tensorflow —— 使用预训练模型

1. optimizer.minimize 与 global_stepoptimizer 的搭配使用

2017-03-25 23:01:30

阅读数:625

评论数:0

深度学习框架 —— tflearn 的学习

1. tflearn.data_utils from tflearn.data_utils import to_categorical one_hot 编码; 第一个参数为属性列,第二个参数接受类别个数;

2017-03-24 22:06:01

阅读数:3549

评论数:0

prettytensor 的使用

prettytensor 顾名思义,对原始的 tensorflow 下的 tensor 进行封装(prettytensor 以 tensorflow 为基础,二者搭配使用),使其成为一个更为接口友好的 tensor,这里的接口友好指的是更便于像搭积木一般地构建深层神经网络。

2017-03-22 09:39:49

阅读数:3509

评论数:0

TensorFlow 实战(五)—— 图像预处理

当然 tensorflow 并不是一种用于图像处理的框架,这里图像处理仅仅是一些简单的像素级操作,最终目的比如用于数据增强;

2017-03-21 23:21:27

阅读数:10447

评论数:0

tensorflow 的版本差异与变化

官方文档的说明,Transitioning to TensorFlow 1.01. 简单列举如下 变量 tf.VARIABLES ⇒ tf.GLOBAL_VARIABLES tf.all_variables ⇒ tf.global_vairables tf.initialize_all_vari...

2017-03-20 21:53:16

阅读数:3078

评论数:0

TensorFlow 学习(十一)—— 正则(regularizer)

正则作用的对象是目标函数,如图对均方误差使用 ℓ2\ell_2 正则:loss = tf.reduce_mean(tf.square(y-y_) + tf.contrib.layers.l2_regularizer(lambda)(w))1. 基本工作原理weights = tf.constant...

2017-03-19 16:37:49

阅读数:9724

评论数:0

TensorFlow 学习(九)—— 初始化函数(概率分布函数 api、常数生成函数)

tensorflow 下的概率分布函数,一般用于对变量进行初始化,这里的变量显然是指神经网络的参数(连接层之间的权值矩阵和偏执向量)。 标准高斯:tf.random_normal([2, 3], stddev=2),均值为 0,标准差为 2 截断正态分布:tf.truncated_normal()

2017-03-19 15:34:12

阅读数:4248

评论数:0

TensorFlow 下 mnist 数据集的操作及可视化

首先需要连网下载数据集:mnsit = input_data.read_data_sets(train_dir='./MNIST_DATA', one_hot=True) # 如果当前文件夹下没有 MNIST_DATA,会首先创建该文件夹,然后下载 mnist 数据集训练集与测

2017-03-16 15:12:31

阅读数:2362

评论数:0

TensorFlow 学习(八)—— 梯度计算(gradient computation)

1. 一个实例 relu = tf.nn.relu(tf.matmul(x, W) + b) C = [...][db, dW, dx] = tf.gradient(C, [b, w, x])

2017-03-16 11:28:57

阅读数:6295

评论数:0

TensorFlow: couldn’t open CUDA library cupti64_80.dll、InternalError: Blas SGEMM launch failed

1. couldn’t open CUDA library cupti64_80.dll在资源管理器中查询 cupti64_80.dll 的位置。如对于 windows 用户而言,如果将 nvidia 的显卡驱动安装在默认位置,该 dll 文件的路径在

2017-03-15 22:36:26

阅读数:6298

评论数:1

TensorFlow 学习(七) — 常用函数 api、tf.nn、tf.keras

0. 四则运算 平方:tf.square(),开方:tf.sqrt() 1. 简单数理统计 Rn→R\mathbb R^n\rightarrow \mathbb R(从矢量到标量),意味着一种约简(reduce)。均值:tf.reduce_mean,求和:tf.reduce_sum stdd...

2017-03-15 17:13:26

阅读数:7007

评论数:0

keras+tensorflow —— 可视化及tensorboard

TensorBoard 是 TensorFlow 官方推出的可视化工具,可将模型训练过程中的各种汇总数据(summaries)展示出来,包括: 标量(scalars) 图像(images) 音频(audio),视频(video) 计算图(Graphs) 数据分布(Distributions)、直方...

2017-03-15 16:56:50

阅读数:741

评论数:0

TensorFlow 学习(六) —— TensorFlow 与 numpy 的交互

1. 将 numpy 下的多维数组(ndarray)转化为 tf.convert_to_tensor()

2017-03-15 12:36:15

阅读数:18332

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭