TensorFlow 学习(八)—— 梯度计算(gradient computation)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/lanchunhui/article/details/62419188
  • maxpooling 的 max 函数关于某变量的偏导也是分段的,关于它就是 1,不关于它就是 0;
  • BP 是反向传播求关于参数的偏导,SGD 则是梯度更新,是优化算法;

1. 一个实例


这里写图片描述

relu = tf.nn.relu(tf.matmul(x, W) + b)
C = [...]

[db, dW, dx] = tf.gradient(C, [b, w, x])
展开阅读全文

没有更多推荐了,返回首页