特征选择 - Filter、Wrapper、Embedded

原创 2018年04月16日 23:28:12

Filter methods:

  • information gain
  • chi-square test
  • fisher score
  • correlation coefficient
  • variance threshold

Wrapper methods:

  • recursive feature elimination
  • sequential feature selection algorithms
  • genetic algorithms

Embedded methods:

  • L1 (LASSO) regularization
    • 增加惩罚项(正则项),用于控制过拟合
    • regularized_cost = cost + regularization_penalty
    • LASSO的方式:λi|wi|
  • decision tree
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/lanchunhui/article/details/79968475

机器学习&数据挖掘:特征选择之 wrapper approach

在前面简要介绍了特征选择的Filter方法,由于Filter方法还有很多,在此不能一一介绍。Filter方法从原始特征中选择特征子集,用于后续的机器学习算法。由于Filter在特征选择时,没有考虑到所...
  • banbuduoyujian
  • banbuduoyujian
  • 2016-11-18 16:16:52
  • 2893

机器学习&数据挖掘:特征选择之Filter : Focus Approach

Focus Approach[1]方法是基于穷举搜索的Filter方法,该方法倾向于选择能够区分样本的最小特征子集。Focus Approach特征选择的度量是一致性度量。 通俗来说,特征选择的一致...
  • banbuduoyujian
  • banbuduoyujian
  • 2016-11-14 18:30:47
  • 1128

数据预处理之特征选择

特征选择的意义在对数据进行异常值、缺失值、数据转换等处理后,我们需要从当前数据集中选出有意义的特征,然后输入到算法模型中进行训练。对数据集进行特征选择主要基于以下几方面的考虑:1.冗余的特征会影响阻碍...
  • xzfreewind
  • xzfreewind
  • 2017-08-11 21:32:11
  • 901

斯坦福大学机器学习——特征选择(Feature selection)

特征选择是一种及其重要的数据预处理方法。假设你需要处理一个监督学习问题,样本的特征数非常大,但是可能仅仅有少部分特征会和对结果产生影响。甚至是简单的线性分类,如果样本特征数超过了n,但假设函数的VC维...
  • linkin1005
  • linkin1005
  • 2015-01-22 14:06:02
  • 14410

机器学习中的特征选择和优缺点

特征选择和机器学习算法两者存在紧密的联系,根据特征选择中子集评价标准和后续学习算法的结合 方式可分为嵌入式(embedded)、过滤式(filter)和封装式(wraper) 1.嵌入式特征选择 在嵌...
  • piaodexin
  • piaodexin
  • 2017-08-15 23:49:40
  • 1148

机器学习中的特征选择

首先声明,本人个人观点,仅供交流。 本人欠专业人士,并不了解显示实践中的特征工程。 特征选择是一个重要的数据预处理过程,获得数据之后要先进行特征选择然后再训练模型。主要作用:1、降维 2、去除不...
  • rui307
  • rui307
  • 2016-04-25 17:24:00
  • 10952

模型选择之特征选择

当我们在训练模型时,其中一个很重要的部分是训练模型的参数,也就是模型中各个特征的值,不同的模型具有不同的特征组合,因此对于特征的选择也就对应了模型的选择。举个文本分类的例子,在文本分类的任务中,特征数...
  • chenzhijay
  • chenzhijay
  • 2014-11-12 15:03:18
  • 2822

LVW(Las Vegas Wrapper)特征选择算法简单介绍

LVW(Las Vegas Wrapper)特征选择方法
  • coffee_cream
  • coffee_cream
  • 2017-03-11 17:56:03
  • 2024

机器学习中的特征——特征选择的方法以及注意点

关于机器学习中的特征我有话要说 一、特征选择和降维 二、特征选择的目标 三、...
  • google19890102
  • google19890102
  • 2014-10-12 17:23:26
  • 35431

特征选择(Feature Selection)

交叉验证 直接介绍k折叠交叉验证(k-fold cross validation): 1 1.      特征选择 1.1      相关系数 先考虑对连续的输出y进行预测,皮尔森相关性系数...
  • u013802188
  • u013802188
  • 2014-10-28 22:40:30
  • 1701
收藏助手
不良信息举报
您举报文章:特征选择 - Filter、Wrapper、Embedded
举报原因:
原因补充:

(最多只允许输入30个字)