Logistic Function

Here's another straightforward example, though a bit more elaborate
than adding two numbers together. Let's say that you want to compute
the logistic curve, which is given by:

.. math::

   s(x) = \frac{1}{1 + e^{-x}}

You want to compute the function :ref:`elementwise
<libdoc_tensor_elementwise>` on matrices of doubles, which means that
you want to apply this function to each individual element of the

Well, what you do is this:

.. If you modify this code, also change :
.. theano/tests/

>>> import theano
>>> import theano.tensor as T
>>> x = T.dmatrix('x')
>>> s = 1 / (1 + T.exp(-x))
>>> logistic = theano.function([x], s)
>>> logistic([[0, 1], [-1, -2]])
array([[ 0.5       ,  0.73105858],
       [ 0.26894142,  0.11920292]])

The reason logistic is performed elementwise is because all of its
operations---division, addition, exponentiation, and division---are
themselves elementwise operations.

logistic依次执行的原因是因为所有它的运算-除法,加法,指数运算 - 是它们自己的元素依次运算。

It is also the case that:

.. math::

    s(x) = \frac{1}{1 + e^{-x}} = \frac{1 + \tanh(x/2)}{2}

We can verify that this alternate form produces the same values:

.. If you modify this code, also change :
.. theano/tests/

>>> s2 = (1 + T.tanh(x / 2)) / 2
>>> logistic2 = theano.function([x], s2)
>>> logistic2([[0, 1], [-1, -2]])
array([[ 0.5       ,  0.73105858],
       [ 0.26894142,  0.11920292]])

Computing More than one Thing at the Same Time

Theano supports functions with multiple outputs. For example, we can
compute the :ref:`elementwise <libdoc_tensor_elementwise>` difference, absolute difference, and
squared difference between two matrices *a* and *b* at the same time:

.. If you modify this code, also change :
.. theano/tests/

>>> a, b = T.dmatrices('a', 'b')
>>> diff = a - b
>>> abs_diff = abs(diff)
>>> diff_squared = diff**2
>>> f = theano.function([a, b], [diff, abs_diff, diff_squared])
>>> f([[1, 1], [1, 1]], [[0, 1], [2, 3]])
[array([[ 1.,  0.],
       [-1., -2.]]), array([[ 1.,  0.],
       [ 1.,  2.]]), array([[ 1.,  0.],
       [ 1.,  4.]])]

Setting a Default Value for an Argument
.. theano/tests/

>>> from theano import In
>>> from theano import function
>>> x, y = T.dscalars('x', 'y')
>>> z = x + y
>>> f = function([x, In(y, value=1)], z)
>>> f(33)
>>> f(33, 2)

This makes use of the :ref:`In <function_inputs>` class which allows
you to specify properties of your function's parameters with greater detail. Here we
give a default value of 1 for *y* by creating a ``In`` instance with
its ``value`` field set to 1.

Inputs with default values must follow inputs without default
values (like Python's functions).  There can be multiple inputs with default values. These parameters can
be set positionally or by name, as in standard Python:

.. If you modify this code, also change :
.. theano/tests/

>>> x, y, w = T.dscalars('x', 'y', 'w')
>>> z = (x + y) * w
>>> f = function([x, In(y, value=1), In(w, value=2, name='w_by_name')], z)
>>> f(33)
>>> f(33, 2)
>>> f(33, 0, 1)
>>> f(33, w_by_name=1)
>>> f(33, w_by_name=1, y=0)

.. note::
   ``In`` does not know the name of the local variables *y* and *w*
   that are passed as arguments.  The symbolic variable objects have name
   attributes (set by ``dscalars`` in the example above) and *these* are the
   names of the keyword parameters in the functions that we build.  This is
   the mechanism at work in ``In(y, value=1)``.  In the case of ``In(w,
   value=2, name='w_by_name')``. We override the symbolic variable's name
   attribute with a name to be used for this function.

You may like to see :ref:`Function<usingfunction>` in the library for more detail.

.. _functionstateexample:

Using Shared Variables

It is also possible to make a function with an internal state. For
example, let's say we want to make an accumulator: at the beginning,
the state is initialized to zero. Then, on each function call, the state
is incremented by the function's argument.

First let's define the *accumulator* function. It adds its argument to the
internal state, and returns the old state value.

.. If you modify this code, also change :
.. theano/tests/

>>> from theano import shared
>>> state = shared(0)
>>> inc = T.iscalar('inc')
>>> accumulator = function([inc], state, updates=[(state, state+inc)])

.. theano/tests/

>>> print(state.get_value())
>>> accumulator(1)
>>> print(state.get_value())
>>> accumulator(300)
>>> print(state.get_value())

It is possible to reset the state. Just use the ``.set_value()`` method:

>>> state.set_value(-1)
>>> accumulator(3)
>>> print(state.get_value())

As we mentioned above, you can define more than one function to use the same
shared variable.  These functions can all update the value.

.. If you modify this code, also change :
.. theano/tests/

>>> decrementor = function([inc], state, updates=[(state, state-inc)])
>>> decrementor(2)
>>> print(state.get_value())

.. theano/tests/

>>> fn_of_state = state * 2 + inc
>>> # The type of foo must match the shared variable we are replacing
>>> # with the ``givens``
>>> foo = T.scalar(dtype=state.dtype)
>>> skip_shared = function([inc, foo], fn_of_state, givens=[(state, foo)])
>>> skip_shared(1, 3)  # we're using 3 for the state, not state.value
>>> print(state.get_value())  # old state still there, but we didn't use it

Copying functions
Theano functions can be copied, which can be useful for creating similar
functions but with different shared variables or updates. This is done using
the :func:`copy()<theano.compile.function_module.Function.copy>` method of ``function`` objects. The optimized graph of the original function is copied,
so compilation only needs to be performed once.

Let's start from the accumulator defined above:

>>> import theano
>>> import theano.tensor as T
>>> state = theano.shared(0)
>>> inc = T.iscalar('inc')
>>> accumulator = theano.function([inc], state, updates=[(state, state+inc)])

We can use it to increment the state as usual:

>>> accumulator(10)
>>> print(state.get_value())

We can use ``copy()`` to create a similar accumulator but with its own internal state
using the ``swap`` parameter, which is a dictionary of shared variables to exchange:

>>> new_state = theano.shared(0)
>>> new_accumulator = accumulator.copy(swap={state:new_state})
>>> new_accumulator(100)
>>> print(new_state.get_value())

The state of the first function is left untouched:

>>> print(state.get_value())

We now create a copy with updates removed using the ``delete_updates``
parameter, which is set to ``False`` by default:

>>> null_accumulator = accumulator.copy(delete_updates=True)

As expected, the shared state is no longer updated:

>>> null_accumulator(9000)
>>> print(state.get_value())

.. _using_random_numbers:

Using Random Numbers

Brief Example

Here's a brief example.  The setup code is:

.. If you modify this code, also change :
.. theano/tests/

.. testcode::

    from theano.tensor.shared_randomstreams import RandomStreams
    from theano import function
    srng = RandomStreams(seed=234)
    rv_u = srng.uniform((2,2))
    rv_n = srng.normal((2,2))
    f = function([], rv_u)
    g = function([], rv_n, no_default_updates=True)    #Not updating rv_n.rng
    nearly_zeros = function([], rv_u + rv_u - 2 * rv_u)

Here, 'rv_u' represents a random stream of 2x2 matrices of draws from a uniform
distribution.  Likewise,  'rv_n' represents a random stream of 2x2 matrices of
draws from a normal distribution.  The distributions that are implemented are
defined in :class:`RandomStreams` and, at a lower level,
in :ref:`raw_random<libdoc_tensor_raw_random>`. They only work on CPU.
See `Other Implementations`_ for GPU version.

Now let's use these objects.  If we call f(), we get random uniform numbers.
The internal state of the random number generator is automatically updated,
so we get different random numbers every time.

>>> f_val0 = f()
>>> f_val1 = f()  #different numbers from f_val0

When we add the extra argument ``no_default_updates=True`` to
``function`` (as in *g*), then the random number generator state is
not affected by calling the returned function.  So, for example, calling
*g* multiple times will return the same numbers.

>>> g_val0 = g()  # different numbers from f_val0 and f_val1
>>> g_val1 = g()  # same numbers as g_val0!

An important remark is that a random variable is drawn at most once during any
single function execution.  So the *nearly_zeros* function is guaranteed to
return approximately 0 (except for rounding error) even though the *rv_u*
random variable appears three times in the output expression.

>>> nearly_zeros = function([], rv_u + rv_u - 2 * rv_u)

Seeding Streams

Random variables can be seeded individually or collectively.

You can seed just one random variable by seeding or assigning to the
``.rng`` attribute, using ``.rng.set_value()``.

>>> rng_val = rv_u.rng.get_value(borrow=True)   # Get the rng for rv_u
>>> rng_val.seed(89234)                         # seeds the generator
>>> rv_u.rng.set_value(rng_val, borrow=True)    # Assign back seeded rng

You can also seed *all* of the random variables allocated by a :class:`RandomStreams`
object by that object's ``seed`` method.  This seed will be used to seed a
temporary random number generator, that will in turn generate seeds for each
of the random variables.

>>> srng.seed(902340)  # seeds rv_u and rv_n with different seeds each

Sharing Streams Between Functions

As usual for shared variables, the random number generators used for random
variables are common between functions.  So our *nearly_zeros* function will
update the state of the generators used in function *f* above.

For example:

>>> state_after_v0 = rv_u.rng.get_value().get_state()
>>> nearly_zeros()       # this affects rv_u's generator
array([[ 0.,  0.],
       [ 0.,  0.]])
>>> v1 = f()
>>> rng = rv_u.rng.get_value(borrow=True)
>>> rng.set_state(state_after_v0)
>>> rv_u.rng.set_value(rng, borrow=True)
>>> v2 = f()             # v2 != v1
>>> v3 = f()             # v3 == v1

Copying Random State Between Theano Graphs

An example of how "random states" can be transferred from one theano function
to another is shown below.

>>> from __future__ import print_function
>>> import theano
>>> import numpy
>>> import theano.tensor as T
>>> from theano.sandbox.rng_mrg import MRG_RandomStreams
>>> from theano.tensor.shared_randomstreams import RandomStreams

>>> class Graph():
...     def __init__(self, seed=123):
...         self.rng = RandomStreams(seed)
...         self.y = self.rng.uniform(size=(1,))

>>> g1 = Graph(seed=123)
>>> f1 = theano.function([], g1.y)

>>> g2 = Graph(seed=987)
>>> f2 = theano.function([], g2.y)

>>> # By default, the two functions are out of sync.
>>> f1()
array([ 0.72803009])
>>> f2()
array([ 0.55056769])

>>> def copy_random_state(g1, g2):
...     if isinstance(g1.rng, MRG_RandomStreams):
...         g2.rng.rstate = g1.rng.rstate
...     for (su1, su2) in zip(g1.rng.state_updates, g2.rng.state_updates):
...         su2[0].set_value(su1[0].get_value())

>>> # We now copy the state of the theano random number generators.
>>> copy_random_state(g1, g2)
>>> f1()
array([ 0.59044123])
>>> f2()
array([ 0.59044123])

Other Random Distributions

There are :ref:`other distributions implemented <libdoc_tensor_raw_random>`.

.. _example_other_random:

Other Implementations

There are 2 other implementations based on :ref:`MRG31k3p
<libdoc_rng_mrg>` and :class:`CURAND <theano.sandbox.cuda.rng_curand>`.
The RandomStream only work on the CPU, MRG31k3p
work on the CPU and GPU. CURAND only work on the GPU.

.. note::

    To use you the MRG version easily, you can just change the import to:

        .. code-block:: python

            from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams

.. _logistic_regression:

A Real Example: Logistic Regression

The preceding elements are featured in this more realistic example.
It will be used repeatedly.

.. testcode::

    import numpy
    import theano
    import theano.tensor as T
    rng = numpy.random

    N = 400                                   # training sample size
    feats = 784                               # number of input variables

    # generate a dataset: D = (input_values, target_class)
    D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))
    training_steps = 10000

    # Declare Theano symbolic variables
    x = T.dmatrix("x")
    y = T.dvector("y")

    # initialize the weight vector w randomly
    # this and the following bias variable b
    # are shared so they keep their values
    # between training iterations (updates)
    w = theano.shared(rng.randn(feats), name="w")

    # initialize the bias term
    b = theano.shared(0., name="b")

    print("Initial model:")

    # Construct Theano expression graph
    p_1 = 1 / (1 + T.exp(, w) - b))   # Probability that target = 1
    prediction = p_1 > 0.5                    # The prediction thresholded
    xent = -y * T.log(p_1) - (1-y) * T.log(1-p_1) # Cross-entropy loss function
    cost = xent.mean() + 0.01 * (w ** 2).sum()# The cost to minimize
    gw, gb = T.grad(cost, [w, b])             # Compute the gradient of the cost
                                              # w.r.t weight vector w and
                                              # bias term b
                                              # (we shall return to this in a
                                              # following section of this tutorial)

    # Compile
    train = theano.function(
              outputs=[prediction, xent],
              updates=((w, w - 0.1 * gw), (b, b - 0.1 * gb)))
    predict = theano.function(inputs=[x], outputs=prediction)

    # Train
    for i in range(training_steps):
        pred, err = train(D[0], D[1])

    print("Final model:")
    print("target values for D:")
    print("prediction on D:")

.. testoutput::
   :options: +ELLIPSIS

   Initial model:
   Final model:
   target values for D:
   prediction on D:

发布了347 篇原创文章 · 获赞 608 · 访问量 261万+


©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客