#include <cstdio>
#include <cmath>
using namespace std;
int nonNegativeNum(double c[], int start) {
int cnt = 0;
for (int i = start; i >= 0; i--)
if (abs(c[i]) + 0.05 >= 0.1) cnt++;
return cnt;
}
void printPoly(double c[], int start) {
printf("%d", nonNegativeNum(c, start));
if (nonNegativeNum(c, start) == 0) printf(" 0 0.0");
for (int i = start; i >= 0; i--)
if (abs(c[i]) + 0.05 >= 0.1)
printf(" %d %.1f", i, c[i]);
}
double c1[3000], c2[3000], c3[3000];
int main() {
int m = 0, n = 0, t = 0, max1 = -1, max2= -1;
scanf("%d", &m);
for (int i = 0; i < m; i++) {
scanf("%d", &t);
max1 = max1 > t ? max1 : t;
scanf("%lf", &c1[t]);
}
scanf("%d", &n);
for (int i = 0; i < n; i++) {
scanf("%d", &t);
max2 = max2 > t ? max2 : t;
scanf("%lf", &c2[t]);
}
int t1 = max1, t2 = max2;
while (t1 >= t2) {
double c = c1[t1] / c2[t2];
c3[t1 - t2] = c;
for (int i = t1, j = t2; j >= 0; j--, i--) c1[i] -= c2[j] * c;
while (abs(c1[t1]) < 0.000001) t1--;
}
printPoly(c3, max1 - max2);
printf("\n");
printPoly(c1, t1);
return 0;
}
分析:对于两个多项式A和B,题目给出的必定不会是连续降幂的,根据多项式的除法原理,我们需要缺幂项补零。例如,题中给出的x4-3x2-x-1是缺3次幂的,将缺幂项补上之后,就变成了x4+0x3-3x^2-x-1。由此,我们可以用一个数组来保存一个多项式,即数组的下标对应多项式的指数,下标对应的单元表示多项式的系数,如数组[-1,
-1, -3, 0, 1]。 若已知A多项式的最高次幂为t1, B多项式的最高次幂为t2, 则第一次除法商的最高次幂为t1 – t2, 最高次幂的系数为A[t1] / B[t2], 然后用A[i] -= B[i – (t1 – t2)] * A[t1] / B[t2],
其中i从A的最高次幂t1到大于等于t1 – t2, 这样就算完成了一个除法了。例如A = [-1, -1, -3, 0, 1], B =
[1, -2, 3], 则t1 = 4, t2= 2, 所以第一次除法商的最高次幂为2, 系数为A[4] / A[2] = 0.3,
循环A[i] -= B[i – (t1 – t2)] * A[t1] / B[t2], i从4到2, 得到新的A=[-1, -1,
-10/3, 2/3, 0], 然后重复上面的步骤, 直到A的最高项幂次小于B的最高项幂次, 此时的A就是余项。[两个可能会让结果出现非零项多项式的测试用例] 1 2 1 1 3 1
1 2 1 1 2 1 [一个比较好算一点的一般测试用例] 3 3 1 2 -12 0 -42 2 1 1 0 -3 // ouput 3
2 1.0 1 -9.0 0 -27.0 1 0 -123.0
————————————————
版权声明:本文为CSDN博主「柳婼」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/liuchuo/article/details/82185367
毕竟我不会 就贴一个柳神的代码吧
429

被折叠的 条评论
为什么被折叠?



