数组的顺序存储

文章介绍了多维数组的两种顺序存储方式——行序和列序,以及在C语言中多采用行序存储。对于指定元素的查找和修改,提供了相应的计算公式。还涉及到数组的抽象数据类型、线性表的概念,以及如何在内存中计算元素地址。此外,给出了一个C语言实现三维数组的例子。
摘要由CSDN通过智能技术生成

数组作为一种线性存储结构,对存储的数据通常只做查找和修改操作,因此数组结构的实现使用的是顺序存储结构。

要知道,对数组中存储的数据做插入和删除操作,算法的效率是很差的。

由于数组可以是多维的,而顺序存储结构是一维的,因此数组中数据的存储要制定一个先后次序。通常,数组中数据的存储有两种先后存储方式:

  1. 以列序为主(先列后行):按照行号从小到大的顺序,依次存储每一列的元素
  2. 以行序为主(先行后序):按照列号从小到大的顺序,依次存储每一行的元素。


多维数组中,我们最常用的是二维数组。比如说,当二维数组 a[6][6] 按照列序为主的次序顺序存储时,数组在内存中的存储状态如图 1 所示:


图 1 以列序为主的二维数组存储状态


同样,当二维数组 a[6][6] 按照行序为主的次序顺序存储时,数组在内存中的存储状态如图 2 所示:


图 2 以行序为主的二维数组存储状态

C 语言中,多维数组的存储采用的是以行序为主的顺序存储方式。

通过以上内容,我们掌握了将多维数组存储在一维内存空间的方法。那么,后期如何对指定的数据进行查找和修改操作呢?

多维数组查找指定元素

当需要在顺序存储的多维数组中查找某个指定元素时,需知道以下信息:

  • 多维数组的存储方式;
  • 多维数组在内存中存放的起始地址;
  • 该指定元素在原多维数组的坐标(比如说,二维数组中是通过行标和列标来表明数据元素的具体位置的);
  • 数组中数组的具体类型,即数组中单个数据元素所占内存的大小,通常用字母 L 表示;


根据存储方式的不同,查找目标元素的方式也不同。如果二维数组采用以行序为主的方式,则在二维数组 anm 中查找 aij 存放位置的公式为:

LOC(i,j) = LOC(0,0) + (i*m + j) * L;

其中,LOC(i,j) 为 aij 在内存中的地址,LOC(0,0) 为二维数组在内存中存放的起始位置(也就是 a00 的位置)。

而如果采用以列存储的方式,在 anm 中查找 aij 的方式为:

LOC(i,j) = LOC(0,0) + (i*n + j) * L;

数组定义和运算
① 数组是高级语言一般都支持的数据类型,这里学习数组在计算机内部如何处理,主要是存取,地址计算;
② 从逻辑结构上看,数组可以看成是一般线性表的扩充。

二维数组视作线性表
① 把矩阵Am×n看成n个列向量的线性表:
A=(α1,α2…αj…αn),
αj=(a1j,a2j, …,amj),(1 ≤ j ≤ n)本身也是一个线性表,称为列向量。


②把矩阵Am×n看成m个行向量的线性表:
B=(β1,β2, ...βi…,βm),
βi = (ai1, ai2, …, aij, …, ain),(1 ≤ i≤ m)称为行向量。

 

 
高维数组
同理,嵌套(或降维)思路。
三维数组:每个元素为二维数组的线性表。
N维数据:每个元素为N-1维数据的线性表。

数组运算
① 数组是一组有固定个数的元素的集合。
维数、每维上下限确定,元素个数就确定,使得对数组的操作不象对线性表的操作那样,可以在表中任意一个合法的位置插入或删除一个元素。
② 数组操作一般只有两类:
取值:获得特定位置的元素值;
修改:修改特定位置的元素值。
PS:数组的抽象数据类型定义数组下标从1开始,与C语言不同。

数组的顺序存储和实现
数组的顺序存储结构有两种:
一种是按行序存储,如高级语言BASIC、COBOL、PASCAL和C语言都是以行序为主。
另一种是按列序存储,如高级语言中的FORTRAN语言就是以列序为主。

二维数组略(见前)。

三维数组:可行纵列为主序存储,如A3×4×2逻辑结构图:

数组地址计算:
元素地址 = 首元素地址 + 偏移量(与首距离)
偏移量 = 间隔元素个数 x size(单元素空间)

一维数组:
Loc(A[i])=Loc(A[i])+(i-1)*size.

二维数组:
行存储二维数组Am×n,下标从1开始,任意元素aij的地址
Loc[i,j]=Loc[1,1]+(n×(i-1)+j-1)×size,每个元素占size个存储单元,每个元素占1个存储单元 Loc[i,j]=Loc[1,1]+n×(i-1)+(j-1)。


三维数组:
三维数组A(1..r,1..m,1..n)可以看成是r个m×n的二维数组。

 

 

假定每个元素占1个存储单元,行主序存放,首元素a111地址为Loc[1][1][1]
ai11地址:
Loc[i][1][1] = Loc[1][1][1] + (i-1)*m*n ,
aijk地址:
Loc[i][j][k] = Loc[1][1][1] + (i-1)*m*n + (j-1)*n+(k-1)
其中1≤i≤r,1≤j≤m,1≤k≤n。

代码实现:

以下给出了采用以行序为主的方式存储三维数组 a[3][4][2] 的 C 语言代码实现,这里不再对该代码进行分析(代码中有详细注释),有兴趣的读者可以自行拷贝运行:

#include<stdarg.h>
#include<malloc.h>
#include<stdio.h>
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h>

#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW 3
#define UNDERFLOW 4
typedef int Status; //Status是函数的类型,其值是函数结果状态代码,如OK等
typedef int Boolean; //Boolean是布尔类型,其值是TRUE或FALSE
typedef int ElemType;

#define MAX_ARRAY_DIM 8 //假设数组维数的最大值为8
typedef struct
{
    ElemType *base; //数组元素基址,由InitArray分配
    int dim; //数组维数
    int *bounds; //数组维界基址,由InitArray分配
    int *constants; // 数组映象函数常量基址,由InitArray分配
} Array;

Status InitArray(Array *A,int dim,...)
{
    //若维数dim和各维长度合法,则构造相应的数组A,并返回OK
    int elemtotal=1,i; // elemtotal是元素总值
    va_list ap;
    if(dim<1||dim>MAX_ARRAY_DIM)
        return ERROR;
    (*A).dim=dim;
    (*A).bounds=(int *)malloc(dim*sizeof(int));
    if(!(*A).bounds)
        exit(OVERFLOW);
    va_start(ap,dim);
    for(i=0; i<dim; ++i)
    {
        (*A).bounds[i]=va_arg(ap,int);
        if((*A).bounds[i]<0)
            return UNDERFLOW;
        elemtotal*=(*A).bounds[i];
    }
    va_end(ap);
    (*A).base=(ElemType *)malloc(elemtotal*sizeof(ElemType));
    if(!(*A).base)
        exit(OVERFLOW);
    (*A).constants=(int *)malloc(dim*sizeof(int));
    if(!(*A).constants)
        exit(OVERFLOW);
    (*A).constants[dim-1]=1;
    for(i=dim-2; i>=0; --i)
        (*A).constants[i]=(*A).bounds[i+1]*(*A).constants[i+1];
    return OK;
}
Status DestroyArray(Array *A)
{
    //销毁数组A
    if((*A).base)
    {
        free((*A).base);
        (*A).base=NULL;
    }
    else
        return ERROR;
    if((*A).bounds)
    {
        free((*A).bounds);
        (*A).bounds=NULL;
    }
    else
        return ERROR;
    if((*A).constants)
    {
        free((*A).constants);
        (*A).constants=NULL;
    }
    else
        return ERROR;
    return OK;
}
Status Locate(Array A,va_list ap,int *off) // Value()、Assign()调用此函数 */
{
    //若ap指示的各下标值合法,则求出该元素在A中的相对地址off
    int i,ind;
    *off=0;
    for(i=0; i<A.dim; i++)
    {
        ind=va_arg(ap,int);
        if(ind<0||ind>=A.bounds[i])
            return OVERFLOW;
        *off+=A.constants[i]*ind;
    }
    return OK;
}
Status Value(ElemType *e,Array A,...)  
{
    //依次为各维的下标值,若各下标合法,则e被赋值为A的相应的元素值
    va_list ap;
    Status result;
    int off;
    va_start(ap,A);
    if((result=Locate(A,ap,&off))==OVERFLOW) //调用Locate()
        return result;
    *e=*(A.base+off);
    return OK;
}
Status Assign(Array *A,ElemType e,...)
{
    //依次为各维的下标值,若各下标合法,则将e的值赋给A的指定的元素
    va_list ap;
    Status result;
    int off;
    va_start(ap,e);
    if((result=Locate(*A,ap,&off))==OVERFLOW) //调用Locate()
        return result;
    *((*A).base+off)=e;
    return OK;
}

int main()
{
    Array A;
    int i,j,k,*p,dim=3,bound1=3,bound2=4,bound3=2; //a[3][4][2]数组
    ElemType e,*p1;
    InitArray(&A,dim,bound1,bound2,bound3); //构造3*4*2的3维数组A
    p=A.bounds;
    printf("A.bounds=");
    for(i=0; i<dim; i++) //顺序输出A.bounds
        printf("%d ",*(p+i));
    p=A.constants;
    printf("\nA.constants=");
    for(i=0; i<dim; i++) //顺序输出A.constants
        printf("%d ",*(p+i));
    printf("\n%d页%d行%d列矩阵元素如下:\n",bound1,bound2,bound3);
    for(i=0; i<bound1; i++)
    {
        for(j=0; j<bound2; j++)
        {
            for(k=0; k<bound3; k++)
            {
                Assign(&A,i*100+j*10+k,i,j,k); // 将i*100+j*10+k赋值给A[i][j][k]
                Value(&e,A,i,j,k); //将A[i][j][k]的值赋给e
                printf("A[%d][%d][%d]=%2d ",i,j,k,e); //输出A[i][j][k]
            }
            printf("\n");
        }
        printf("\n");
    }
    p1=A.base;
    printf("A.base=\n");
    for(i=0; i<bound1*bound2*bound3; i++) //顺序输出A.base
    {
        printf("%4d",*(p1+i));
        if(i%(bound2*bound3)==bound2*bound3-1)
            printf("\n");
    }
    DestroyArray(&A);
    return 0;
}

运行结果为:

A.bounds=3 4 2
A.constants=8 2 1
3页4行2列矩阵元素如下:
A[0][0][0]= 0 A[0][0][1]= 1
A[0][1][0]=10 A[0][1][1]=11
A[0][2][0]=20 A[0][2][1]=21
A[0][3][0]=30 A[0][3][1]=31

A[1][0][0]=100 A[1][0][1]=101
A[1][1][0]=110 A[1][1][1]=111
A[1][2][0]=120 A[1][2][1]=121
A[1][3][0]=130 A[1][3][1]=131

A[2][0][0]=200 A[2][0][1]=201
A[2][1][0]=210 A[2][1][1]=211
A[2][2][0]=220 A[2][2][1]=221
A[2][3][0]=230 A[2][3][1]=231

A.base=
   0   1  10  11  20  21  30  31
100 101 110 111 120 121 130 131
200 201 210 211 220 221 230 231

参考:

数组的定义与存储顺序_数组的顺序存储_HLXchamp的博客-CSDN博客

数组的顺序存储(C语言版)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值