2.1.2 测试statspack
运行statspack.snap 可以产生系统快照,运行两次,然后执行spreport.sql 就可以生成一个基于两个时间点的报告。
如果一切正常,说明安装成功。
SQL>execute statspack.snap
PL/SQL procedure successfully completed.
SQL>execute statspack.snap
PL/SQL procedure successfully completed.
SQL>@spreport.sql
可是有可能你会得到以下错误:
SQL> exec statspack.snap;
BEGIN statspack.snap; END;
*
ERROR at line 1:
ORA-01401: inserted value too large for column
ORA-06512: at "PERFSTAT.STATSPACK", line 978
ORA-06512: at "PERFSTAT.STATSPACK", line 1612
ORA-06512: at "PERFSTAT.STATSPACK", line 71
ORA-06512: at line 1
这是Oracle 的一个Bug,Bug 号1940915。
该Bug 自8.1.7.3 后修正。
这个问题只会出现在多位的字符集, 需要修改spcpkg.sql 脚本,$ORACLE_HOME/rdbms/admin/spcpkg.sql,将"substr" 修改为 "substrb",然后重新运行该脚本。
该脚本错误部分:
select l_snap_id
, p_dbid
, p_instance_number
, substr(sql_text,1,31)
...........
substr 会将多位的字符, 当作一个byte.substrb 则会当作多个byte。在收集数据时, statpack 会将 top10 的 sql 前 31 个字节 存入数据表中,若在SQL 的前31 个字有中文,就会出现此错误。
注意:运行 spcpkg.sql 也需要以 internal 用户登录 sqlplus
2.1.3 生成statspack报告
调用spreport.sql 可以生成分析报告:
当调用spreprot.sql 时,系统首先会查询快照列表,然后要求你选择生成报告的开始快照ID(begin_snap)和结束快照ID(end_snap),生成一个报告.
为了生成一个report,我们至少需要两次采样:
SQL> @spreport
DB Id DB Name Inst Num Instance
----------- ------------ -------- ------------
2749170756 RES 1 res
Completed Snapshots
Snap Snap
Instance DB Name Id Snap Started Level Comment
------------ ------------ ----- ----------------- ----- ----------------------
res RES 1 26 Jul 2003 16:36 5
2 26 Jul 2003 16:37 5
3 26 Jul 2003 17:03 5
Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enter value for begin_snap:2
Begin Snapshot Id specified: 2
Enter value for end_snap: 3
End Snapshot Id specified: 3
Specify the Report Name
~~~~~~~~~~~~~~~~~~~~~~~
The default report file name is sp_2_3. To use this name,
press to continue, otherwise enter an alternative.
Enter value for report_name: rep0726.txt
……
End of Report
在运行 spreport.sql 生成 statspack 报告的过程中,会有三个地方提示用户输入:
1、 开始快照ID;
2、 结束快照ID;
3、 输出报告文件的文件名,缺省的文件名是sp__
上面输入的开始快照ID是2,开始快照ID是3,输出报告文件的文件名是rep0726.txt
成功运行一次 statspack.snap 就会产生一个 snapshot ,在生成 statspack 报告的时候就可以看到这个 snap id 和 snap 运行的时间。运行 statspack.snap ,就是上面所说的采样,statspack 报告是分析两个采样点之间各种情况。
2.1.4 删除历史快照数据
前面讲过,成功运行一次 statspack.snap 就会产生一个 snapshot ,这个 snapshot 的基本信息是存放在 PERFSTAT.stats$snapshot 表中的,生成 statspack报告时会查询该表的数据,供用户选择准备分析的 snapshot 。如果运行 statspack.snap 次数多了以后,该表的数据也会增加,历史数据会影响正常运行的效果,因此需要定时清理一下历史快照数据。
删除stats$snapshot 数据表中的相应数据,其他表中的数据会相应的级连删除:
SQL> select max(snap_id) from stats$snapshot;
MAX(SNAP_ID)
------------
166
SQL> delete from stats$snapshot where snap_id < = 166;
143 rows deleted
你可以更改snap_id 的范围以保留你需要的数据。
在以上删除过程中,你可以看到所有相关的表都被锁定。
SQL> select a.object_id,a.oracle_username ,b.object_name
from v$locked_object a,dba_objects b
where a.object_id = b.object_id
/
OBJECT_ID ORACLE_USERNAME OBJECT_NAME
------------------------------------- --------------------------------------------------------------------------------
156 PERFSTAT SNAP$
39700 PERFSTAT STATS$LIBRARYCACHE
39706 PERFSTAT STATS$ROLLSTAT
39712 PERFSTAT STATS$SGA
39754 PERFSTAT STATS$PARAMETER
39745 PERFSTAT STATS$SQL_STATISTICS
39739 PERFSTAT STATS$SQL_SUMMARY
39736 PERFSTAT STATS$ENQUEUESTAT
39733 PERFSTAT STATS$WAITSTAT
39730 PERFSTAT STATS$BG_EVENT_SUMMARY
39724 PERFSTAT STATS$SYSTEM_EVENT
39718 PERFSTAT STATS$SYSSTAT
39715 PERFSTAT STATS$SGASTAT
39709 PERFSTAT STATS$ROWCACHE_SUMMARY
39703 PERFSTAT STATS$BUFFER_POOL_STATISTICS
39697 PERFSTAT STATS$LATCH_MISSES_SUMMARY
39679 PERFSTAT STATS$SNAPSHOT
39682 PERFSTAT STATS$FILESTATXS
39688 PERFSTAT STATS$LATCH
174 PERFSTAT JOB$
20 rows selected
Oracle 还提供了系统脚本用于Truncate 这些统计信息表,这个脚本名字是: sptrunc.sql (8i、9i 都相同)
该脚本主要内容如下,里面看到的就是statspack 相关的所有系统表:
truncate table STATS$FILESTATXS;
truncate table STATS$LATCH;
truncate table STATS$LATCH_CHILDREN;
truncate table STATS$LATCH_MISSES_SUMMARY;
truncate table STATS$LATCH_PARENT;
truncate table STATS$LIBRARYCACHE;
truncate table STATS$BUFFER_POOL_STATISTICS;
truncate table STATS$ROLLSTAT;
truncate table STATS$ROWCACHE_SUMMARY;
truncate table STATS$SGA;
truncate table STATS$SGASTAT;
truncate table STATS$SYSSTAT;
truncate table STATS$SESSTAT;
truncate table STATS$SYSTEM_EVENT;
truncate table STATS$SESSION_EVENT;
truncate table STATS$BG_EVENT_SUMMARY;
truncate table STATS$WAITSTAT;
truncate table STATS$ENQUEUESTAT;
truncate table STATS$SQL_SUMMARY;
truncate table STATS$SQL_STATISTICS;
truncate table STATS$SQLTEXT;
truncate table STATS$PARAMETER;
delete from STATS$SNAPSHOT;
delete from STATS$DATABASE_INSTANCE;
commit;
2.1.5 一些重要脚本
1.通过导出保存及共享数据
在诊断系统问题时,可能需要向专业人士提供原始数据,这时我们可以导出Statspack 表数据,
其中我们可能用到:spuexp.par
其内容主要为:
file=spuexp.dmp log=spuexp.log compress=y grants=y indexes=y rows=y constraints=y owner=PERFSTAT consistent=y
我们可以导出如下:
exp userid=perfstat/my_perfstat_password parfile=spuexp.par
2.删除数据
spdrop.sql 在执行时主要调用两个脚本: spdtab.sql 、spdusr.sql
前者删除表及同义词等数据,后者删除用户
3.Oracle92 中新增加的脚本
1) 用于升级statspack 对象的脚本,这些脚本需要以具有SYSDBA 权限的用户运行, 升级前请先
备份存在的Schema 数据:
spup90.sql: 用于升级9.0 版本的模式至9.2 版本。
spup817.sql: 如果从Statspack 8.1.7 升级,需要运行这个脚本
spup816.sql: 从Statspack 8.1.6 升级,需要运行这个脚本,然后运行spup817.sql
2) sprepsql.sql 用于根据给定的SQL Hash 值生成SQL 报告
2.1.6 调整statspack的收集门限
Statspack 有两种类型的收集选项:
1.级别(level):控制收集数据的类型
Statspack 共有三种快照级别,默认值是5
a. level 0: 一般性能统计。包括等待事件、系统事件、系统统计、回滚段统计、行缓存、SGA、会话、锁、缓冲池统计等等。
b. level 5: 增加SQL 语句。除了包括level0 的所有内容,还包括SQL 语句的收集,收集结果记录在stats$sql_summary 中。
c. level 10: 增加子锁存统计。包括level5 的所有内容。并且还会将附加的子锁存存入stats$lathc_children 中。在使用这个级别时需要慎重,建议在Oracle support 的指导下进行。
可以通过statspack 包修改缺省的级别设置
SQL>execute statspack.snap(i_snap_level=>0,i_modify_parameter=>’true’);
通过这样的设置,以后的收集级别都将是0 级。
如果你只是想本次改变收集级别,可以忽略i_modify_parameter 参数。
SQL>execute statspack.snap(i_snap_level=>10);
2.快照门限:设置收集的数据的阈值。
快照门限只应用于stats$sql_summary 表中获取的SQL 语句。
因为每一个快照都会收集很多数据,每一行都代表获取快照时数据库中的一个SQL 语句,所以stats$sql_summary 很快就会成为Statspack 中最大的表。
门限存储在stats$statspack_parameter 表中。让我们了结一下各种门限:
a. executions_th 这是SQL 语句执行的数量(默认值是100)
b. disk_reads_tn 这是SQL 语句执行的磁盘读入数量(默认值是1000)
c. parse_calls_th 这是SQL 语句执行的解析调用的数量(默认值是1000)
d. buffer_gets_th 这是SQL 语句执行的缓冲区获取的数量(默认值是10000)
任何一个门限值超过以上参数就会产生一条记录。
通过调用statspack.modify_statspack_parameter 函数我们可以改变门限的默认值。
例如:
SQL>execute statspack.modify_statspack_parameter(i_buffer_gets_th=>100000,i_disk_reads_th=>100000;
2.2 对statspack报告的分析
从上面的描述可以看出,产生一个statspack报告是比较简单的,但是如何读懂statspack报告却不是那么容易,需要对Oracle的体系架构、内存结构、等待事件以及应用系统有充分的了解,加上不断的实践,才能基本读懂statspack报告并且从报告中找到调整优化Oracle的途径。
下面接合一个实际的statspack报告,大致分析一下。
2.2.1 基本信息分析
DB Name DB Id Instance Inst Num Release OPS Host
------------ ----------- ------------ -------- ----------- --- --------- ---
RES 2749170756 res 1 8.1.7.0.0 NO res
Snap Id Snap Time Sessions
------- ------------------ --------
Begin Snap: 2 26-Jul-03 16:37:08 38
End Snap: 3 26-Jul-03 17:03:23 38
Elapsed: 26.25 (mins)
Statspack报告首先描述了数据库的基本情况,比如数据库名、实例名、实例个数、oracle版本号等等;然后是该报告的开始快照和结束快照的信息,包括 snap id , snap time 等等;最后是该报告经过的时间跨度,单位是分钟(mins)。
Cache Sizes
~~~~~~~~~~~
db_block_buffers: 61440 log_buffer: 163840
db_block_size: 8192 shared_pool_size: 52428800
然后描述了Oracle内存结构中几个重要的参数。
2.2.2 内存信息分析
Load Profile
~~~~~~~~~~~~ Per Second Per Transaction
--------------- ---------------
Redo size: 4,834.87 11,116.67
Logical reads: 405.53 932.43
Block changes: 60.03 138.02
Physical reads: 138.63 318.75
Physical writes: 54.27 124.79
User calls: 62.69 144.13
Parses: 19.14 44.00
Hard parses: 2.26 5.20
Sorts: 1.83 4.20
Logons: 0.21 0.47
Executes: 21.10 48.50
Transactions: 0.43
% Blocks changed per Read: 14.80 Recursive Call %: 34.45
Rollback per transaction %: 0.00 Rows per Sort: 20.57
Redo size: 是日志的生成量,分为每秒和每事务所产生的,通常在很繁忙的系统中日志生成量可能达到上百k,甚至几百k;
Logical reads: 逻辑读实际上就是logical IO=buffer gets表示的含义,我们可以这样认为,block在内存中,我们每一次读一块内存,就相当于一次逻辑读;
Parses 和 Hard parses: Parse 和 hard parse通常是很容易出问题的部分,80%的系统的慢都是由于这个原因所导致的。
所谓parse分soft parse 和hard parse,soft parse是当一条sql传进来后,需要在shared pool中找是否有相同的sql,如果找到了,那就是soft parse,如果没有找着,那就开始hard parse,实际上hard parse主要是检查该sql所涉及到的所有的对象是否有效以及权限等关系,hard parse之后才根据rule/cost模式生成执行计划,再执行sql。
而hard parse的根源,基本都是由于不使用bind var所导致的,不使用bind var违背了oracle的shared pool的设计的原则,违背了这个设计用来共享的思想,这样导致shared_pool_size里面命中率下降。因此不使用bind var,将导致cpu使用率的问题,极有使得性能急剧下降。
还有就是为了维护internal structure,需要使用latch,latch是一种Oracle低级结构,用于保护内存资源,是一种内部生命周期很短的lock,大量使用latch将消耗大量的cpu资源。
Sorts: 表示排序的数量;
Executes: 表示执行次数;
Transactions: 表示事务数量;
Rollback per transaction %: 表示数据库中事务的回退率。如果不是因为业务本身的原因,通常应该小于10%为好,回退是一个很消耗资源的操作。
Instance Efficiency Percentages (Target 100%)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Buffer Nowait %: 100.00 Redo NoWait %: 99.98
Buffer Hit %: 65.82 In-memory Sort %: 99.65
Library Hit %: 91.32 Soft Parse %: 88.18
Execute to Parse %: 9.28 Latch Hit %: 99.99
Parse CPU to Parse Elapsd %: 94.61 % Non-Parse CPU: 99.90
Buffer Hit %: 数据缓冲区命中率,通常应该大于90%;
Library Hit %: libaray cache的命中率,通常应该大于98%;
In-memory Sort %: 排序在内存的比例,如果这个比例过小,可以考虑增大sort_area_size,使得排序在内存中进行而不是在temp表空间中进行;
Soft Parse %: 软解析的百分比,这个百分比也应该很大才好,因为我们要尽量减少hard parse。 soft parse 百分比=soft/(soft+hard);
Execute to Parse %: 这个数字也应该是越大越好,接近100%最好。有些报告中这个值是负的,看上去很奇怪。事实上这表示一个问题,sql如果被age out的话就可能出现这种情况,也就是sql老化,或执行alter system flush shared_pool等。
Shared Pool Statistics Begin End
------ ------
Memory Usage %: 90.63 87.19
% SQL with executions>1: 71.53 75.39
% Memory for SQL w/exec>1: 59.45 65.17
% SQL with executions>1: 这个表示SQL被执行次数多于一次的比率,也应该大为好,小则表示很多sql只被执行了一次,说明没有使用bind var;