深度学习DeepLearning.ai系列课程学习总结:6. 具有一个隐藏层的平面数据分类代码实战

转载过程中,图片丢失,代码显示错乱。

为了更好的学习内容,请访问原创版本:

http://www.missshi.cn/api/view/blog/59abda2fe519f50d0400018f

Ps:初次访问由于js文件较大,请耐心等候(8s左右)




本节课中,我们将学习如何利用Python的来实现具有一个隐藏层的平面数据分类问题。
这是本课程的第二个Python代码实践,通过本节课的实践,你将会了解反向传播的概念、建立拥有一个隐藏层的神经网络并用于实践。


使用到的库说明

numpy:Python科学计算中最重要的库

sklearn:提供了一些简单而有效的工具用于数据挖掘和数据分析。

mathplotlib:Python画图的库

testCases:自定义文件,封装了一些用于测试样本,用于评估算法的有效性。

planar_utils:自定义文件,封装了一些作用用到的相关函数。


  
  
  1. # Package imports
  2. import numpy as np
  3. import matplotlib.pyplot as plt
  4. from testCases import *
  5. import sklearn
  6. import sklearn.datasets
  7. import sklearn.linear_model
  8. from planar_utils import plot_decision_boundary
  9. from planar_utils import sigmoid
  10. from planar_utils import load_planar_dataset
  11. from planar_utils import load_extra_datasets
  12.  
  13. %matplotlib inline
  14.  
  15. np.random.seed(1) # 设置随机数的seed,保证每次获取的随机数固定


数据集

接下来,我们需要执行load_planar_dataset()来加载数据集,其中,该函数内容如下:


  
  
  1. def load_planar_dataset():
  2.     np.random.seed(1)
  3.     m = 400 # 样本数量
  4.     N = int(m/2) # 每个类别的样本量
  5.     D = 2 # 维度数
  6.     X = np.zeros((m,D)) # 初始化X
  7.     Y = np.zeros((m,1), dtype='uint8') # 初始化Y
  8.     a = 4 # 花儿的最大长度
  9.  
  10.     for j in range(2):
  11.         ix = range(N*j,N*(j+1))
  12.         t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
  13.         r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
  14.         X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
  15.         Y[ix] = j
  16.         
  17.     X = X.T
  18.     Y = Y.T
  19.  
  20.     return X, Y

加载数据集,并用图像将其显示出来:


  
  
  1. load_planar_dataset()
  2. plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);

Ps:图像像是一朵花儿,对于y=0时,显示为红色的点;而当y=1时,显示的是蓝色的点。

我们的目的是希望建立一个模型可以将两种颜色的点区分开。

接下来,我们看一下训练集的维度吧:


  
  
  1. shape_X = X.shape
  2. shape_Y = Y.shape
  3. = shape_X[1]  # training set size
  4.  
  5. print ('The shape of X is: ' + str(shape_X))
  6. print ('The shape of Y is: ' + str(shape_Y))
  7. print ('I have m = %d training examples!' % (m))
  8. # The shape of X is: (2, 400)
  9. # The shape of Y is: (1, 400)
  10. # I have m = 400 training examples!

即X的维度为2*400,Y的维度为1*400,训练样本的数量为400。


简单的逻辑回归实现

在建立一个神经网络之前,我们先用逻辑回归算法来解决一下该问题。

我们可以直接使用sklearn的内置函数来完成。


  
  
  1. clf = sklearn.linear_model.LogisticRegressionCV();
  2. clf.fit(X.T, Y.T);

接下来,我们用图像来显示出来模型为分界线:


  
  
  1. plot_decision_boundary(lambda x: clf.predict(x), X, Y)
  2. plt.title("Logistic Regression")
  3.  
  4. # Print accuracy
  5. LR_predictions = clf.predict(X.T)
  6. print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
  7.        '% ' + "(percentage of correctly labelled datapoints)")
  8. # Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)

Ps:其中plot_decision_boundary的实现如下:


  
  
  1. def plot_decision_boundary(model, X, y):
  2.     # Set min and max values and give it some padding
  3.     x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
  4.     y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
  5.     h = 0.01
  6.     # Generate a grid of points with distance h between them
  7.     xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
  8.     # Predict the function value for the whole grid
  9.     Z = model(np.c_[xx.ravel(), yy.ravel()])
  10.     Z = Z.reshape(xx.shape)
  11.     # Plot the contour and training examples
  12.     plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
  13.     plt.ylabel('x2')
  14.     plt.xlabel('x1')
  15.     plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)

得到的模型分割结果图如下:

从分割图像和预测准确性上,我们可以看出,由于该应用不是线性可分的,因此,Logistic回归算法无法得到一个令人满意的结果。


神经网络模型

对于含有一个隐藏层的神经网络而言,其模型结构如下:

从数学公式的角度来看,对于每个训练样本x(i),计算公式如下:

通过结合样本的真实输入y,计算代价函数J的方式如下:

Ps:对于建立一个神经网络的通用过程如下:

Step1:设计网络结构,例如多少层,每层有多少神经元等。

Step2:初始化模型的参数

Step3:循环

    Step3.1:前向传播计算

    Step3.2:计算代价函数

    Step3.3:反向传播计算

    Step3.4:更新参数

接下来,我们就逐个实现这个过程中需要用到的相关函数,并整合至nn_model()中。

当nn_model()模型建立好后,我们就可以用于预测或新数据集的训练与使用。


定义神经网络结构

给定如下变量:

n_x:输入层神经元的数目

n_h:隐藏层神经元的数目

n_y:输出层神经元的数目

此处,我们需要根据X和Y来确定n_x和n_y,另外n_h设置为4。


  
  
  1. def layer_sizes(X, Y):
  2.     """
  3.     Arguments:
  4.     X -- input dataset of shape (input size, number of examples)
  5.     Y -- labels of shape (output size, number of examples)
  6.     
  7.     Returns:
  8.     n_x -- the size of the input layer
  9.     n_h -- the size of the hidden layer
  10.     n_y -- the size of the output layer
  11.     """
  12.     n_x = X.shape[0] # size of input layer
  13.     n_h = 4
  14.     n_y = Y.shape[0] # size of output layer
  15.     return (n_x, n_h, n_y)

  
  
  1. X_assess, Y_assess = layer_sizes_test_case()  #获取伪测试集
  2. (n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess)
  3. print("The size of the input layer is: n_x = " + str(n_x))
  4. print("The size of the hidden layer is: n_h = " + str(n_h))
  5. print("The size of the output layer is: n_y = " + str(n_y))
  6. # The size of the input layer is: n_x = 5
  7. # The size of the hidden layer is: n_h = 4
  8. # The size of the output layer is: n_y = 2


初始化模型参数

为了实现初始化模型参数的任务,我们需要实现一个initialize_parameters()函数。

按照之前理论课的内容,我们需要用一个较小的随机数来初始化W,用零向量初始化b。


  
  
  1. def initialize_parameters(n_x, n_h, n_y):
  2. """
  3. Argument:
  4. n_x -- size of the input layer
  5. n_h -- size of the hidden layer
  6. n_y -- size of the output layer
  7. Returns:
  8. params -- python dictionary containing your parameters:
  9. W1 -- weight matrix of shape (n_h, n_x)
  10. b1 -- bias vector of shape (n_h, 1)
  11. W2 -- weight matrix of shape (n_y, n_h)
  12. b2 -- bias vector of shape (n_y, 1)
  13. """
  14. np.random.seed(2)
  15. W1 = np.random.randn(n_h, n_x) * 0.01
  16. b1 = np.zeros((n_h, 1)) * 0.01
  17. W2 = np.random.randn(n_y, n_h) * 0.01
  18. b2 = np.zeros((n_y, 1)) * 0.01
  19. assert (W1.shape == (n_h, n_x))
  20. assert (b1.shape == (n_h, 1))
  21. assert (W2.shape == (n_y, n_h))
  22. assert (b2.shape == (n_y, 1))
  23. parameters = {"W1": W1,
  24. "b1": b1,
  25. "W2": W2,
  26. "b2": b2}
  27. return parameters


循环

接下来,就是整个训练过程中最重要的阶段了。

我们需要实现整个训练过程的循环过程。

首先,我们从前向传播开始:


  
  
  1. def forward_propagation(X, parameters):
  2. """
  3. Argument:
  4. X -- input data of size (n_x, m)
  5. parameters -- python dictionary containing your parameters (output of initialization function)
  6. Returns:
  7. A2 -- The sigmoid output of the second activation
  8. cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
  9. """
  10. # Retrieve each parameter from the dictionary "parameters"
  11. W1 = parameters["W1"]
  12. b1 = parameters["b1"]
  13. W2 = parameters["W2"]
  14. b2 = parameters["b2"]
  15. # Implement Forward Propagation to calculate A2 (probabilities)
  16. Z1 = np.dot(W1, X) + b1
  17. A1 = np.tanh(Z1)
  18. Z2 = np.dot(W2, A1) + b2
  19. A2 = sigmoid(Z2)
  20. assert(A2.shape == (1, X.shape[1]))
  21. cache = {"Z1": Z1,
  22. "A1": A1,
  23. "Z2": Z2,
  24. "A2": A2}
  25. return A2, cache

此时,根据forward_propagation()已经可以计算得到A[2]了,接下来,我们需要结合真实结果来计算代价函数:


  
  
  1. def compute_cost(A2, Y, parameters):
  2. """
  3. Computes the cross-entropy cost given in equation (13)
  4. Arguments:
  5. A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
  6. Y -- "true" labels vector of shape (1, number of examples)
  7. parameters -- python dictionary containing your parameters W1, b1, W2 and b2
  8. Returns:
  9. cost -- cross-entropy cost given equation (13)
  10. """
  11. m = Y.shape[1] # number of example
  12.  
  13. # Compute the cross-entropy cost
  14. logprobs = np.multiply(np.log(A2),Y) + np.multiply(np.log(1 - A2), 1 - Y)
  15. cost = -np.sum(logprobs) / m
  16. cost = np.squeeze(cost) # makes sure cost is the dimension we expect.
  17. # E.g., turns [[17]] into 17
  18. assert(isinstance(cost, float))
  19. return cost

第三步,我们需要利用之前的cache来进行反向传播计算,计算公式如下:


  
  
  1. def backward_propagation(parameters, cache, X, Y):
  2. """
  3. Implement the backward propagation using the instructions above.
  4. Arguments:
  5. parameters -- python dictionary containing our parameters
  6. cache -- a dictionary containing "Z1", "A1", "Z2" and "A2".
  7. X -- input data of shape (2, number of examples)
  8. Y -- "true" labels vector of shape (1, number of examples)
  9. Returns:
  10. grads -- python dictionary containing your gradients with respect to different parameters
  11. """
  12. m = X.shape[1]
  13. # First, retrieve W1 and W2 from the dictionary "parameters".
  14. W1 = parameters["W1"]
  15. W2 = parameters["W2"]
  16. # Retrieve also A1 and A2 from dictionary "cache".
  17. A1 = cache["A1"]
  18. A2 = cache["A2"]
  19. # Backward propagation: calculate dW1, db1, dW2, db2.
  20. dZ2 = A2 - Y
  21. dW2 = np.dot(dZ2, A1.T) / m
  22. db2 = np.sum(dZ2, axis=1, keepdims=True) / m
  23. dZ1 = np.multiply(np.dot(W2.T, dZ2), (1 - np.power(A1, 2)))
  24. dW1 = np.dot(dZ1, X.T) / m
  25. db1 = np.sum(dZ1, axis=1, keepdims=True) / m
  26. grads = {"dW1": dW1,
  27. "db1": db1,
  28. "dW2": dW2,
  29. "db2": db2}
  30. return grads

Ps:g[1](z) = tanh(z),其导数函数如下:

最后一步,我们需要利用反向传播计算得到的dW, db来更新W和b。

通用的更新公式如下:

其中,alpha表示学习速率,theta表示被更新的变量。

此外,需要说明的是,学习速度选择的适当与否对最终的收敛结果有着很大的影响。

一个合适的学习速率可以使得函数快速且稳定的到达最优值附近。

而一个过大的学习速度会导致其无法正常收敛而出现大幅度的波动:


  
  
  1. def update_parameters(parameters, grads, learning_rate = 1.2):
  2. """
  3. Updates parameters using the gradient descent update rule given above
  4. Arguments:
  5. parameters -- python dictionary containing your parameters
  6. grads -- python dictionary containing your gradients
  7. Returns:
  8. parameters -- python dictionary containing your updated parameters
  9. """
  10. # Retrieve each parameter from the dictionary "parameters"
  11. W1 = parameters["W1"]
  12. b1 = parameters["b1"]
  13. W2 = parameters["W2"]
  14. b2 = parameters["b2"]
  15. # Retrieve each gradient from the dictionary "grads"
  16. dW1 = grads["dW1"]
  17. db1 = grads["db1"]
  18. dW2 = grads["dW2"]
  19. db2 = grads["db2"]
  20. # Update rule for each parameter
  21. W1 = W1 - learning_rate * dW1
  22. b1 = b1 - learning_rate * db1
  23. W2 = W2 - learning_rate * dW2
  24. b2 = b2 - learning_rate * db2
  25. parameters = {"W1": W1,
  26. "b1": b1,
  27. "W2": W2,
  28. "b2": b2}
  29. return parameters


整合成为nn_model()

接下来,我们希望将之前准备的几个函数整合到模型中,可以方便快速的直接使用:


  
  
  1. def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
  2. """
  3. Arguments:
  4. X -- dataset of shape (2, number of examples)
  5. Y -- labels of shape (1, number of examples)
  6. n_h -- size of the hidden layer
  7. num_iterations -- Number of iterations in gradient descent loop
  8. print_cost -- if True, print the cost every 1000 iterations
  9. Returns:
  10. parameters -- parameters learnt by the model. They can then be used to predict.
  11. """
  12. np.random.seed(3)
  13. n_x = layer_sizes(X, Y)[0]
  14. n_y = layer_sizes(X, Y)[2]
  15. # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
  16. parameters = initialize_parameters(n_x, n_h, n_y)
  17. W1 = parameters["W1"]
  18. b1 = parameters["b1"]
  19. W2 = parameters["W2"]
  20. b2 = parameters["b2"]
  21. # Loop (gradient descent)
  22. for i in range(0, num_iterations):
  23. # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
  24. A2, cache = forward_propagation(X, parameters)
  25. # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
  26. cost = compute_cost(A2, Y, parameters)
  27. # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
  28. grads = backward_propagation(parameters, cache, X, Y)
  29. # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
  30. parameters = update_parameters(parameters, grads)
  31. # Print the cost every 1000 iterations
  32. if print_cost and i % 1000 == 0:
  33. print ("Cost after iteration %i: %f" %(i, cost))
  34.  
  35. return parameters


预测

除了训练模型外,我们还需要使用我们的模型来进行预测。

通常,我们会设置一个阈值,当预测结果大于该阈值时,我们认为其为1,否则为0。0.5是一个很常用的阈值。


  
  
  1. def predict(parameters, X):
  2. """
  3. Using the learned parameters, predicts a class for each example in X
  4. Arguments:
  5. parameters -- python dictionary containing your parameters
  6. X -- input data of size (n_x, m)
  7. Returns
  8. predictions -- vector of predictions of our model (red: 0 / blue: 1)
  9. """
  10. A2, cache = forward_propagation(X, parameters)
  11. predictions = (A2 > 0.5)
  12. return predictions

到目前为止,我们已经实现了完整的神经网络模型和预测函数,接下来,我们用我们的数据集来训练一下吧:


  
  
  1. parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
  2.  
  3. # Plot the decision boundary
  4. plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
  5. plt.title("Decision Boundary for hidden layer size " + str(4))

分类曲线如上图所示,接下来,我们使用预测函数计算一下我们模型的预测准确度:


  
  
  1. # Print accuracy
  2. predictions = predict(parameters, X)
  3. print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%') 
  4. # Accuracy: 90%

相比47%的逻辑回归预测率,使用含有一个隐藏层的神经网络预测的准确度可以达到90%。


调整隐藏层神经元数目观察结果

接下来,我们使用包含不同隐藏层神经元的模型来进行训练,以此来观察神经元数量度模型的影响。

我们分别适用包含1,2,3,4,5,20,50个神经元的模型来进行训练:


  
  
  1. plt.figure(figsize=(16, 32))
  2. hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50]
  3. for i, n_h in enumerate(hidden_layer_sizes):
  4. plt.subplot(5, 2, i+1)
  5. plt.title('Hidden Layer of size %d' % n_h)
  6. parameters = nn_model(X, Y, n_h, num_iterations = 5000)
  7. plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
  8. predictions = predict(parameters, X)
  9. accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
  10. print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))

对比上述图像,我们可以发现:

1.神经元数目越多,生成的分割曲线越复杂,最终越可能导致过拟合。

2.对该应用而言,最好的神经元数目是n_h=5,此时,几乎没有过拟合问题发生。

3.后续的课程中,我们将继续讲解正则化,通过一些正则化方法,我们可以有效的避免过拟合的问题发生。


用其他数据集进行性能测试

如果你想要用其他的数据集进行练习,这儿可以给你提供一些额外的训练集:


  
  
  1. noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets()
  2.  
  3. datasets = {"noisy_circles": noisy_circles,
  4. "noisy_moons": noisy_moons,
  5. "blobs": blobs,
  6. "gaussian_quantiles": gaussian_quantiles}
  7.  
  8. ### START CODE HERE ### (choose your dataset)
  9. dataset = "noisy_moons"
  10. ### END CODE HERE ###
  11.  
  12. X, Y = datasets[dataset]
  13. X, Y = X.T, Y.reshape(1, Y.shape[0])
  14.  
  15. # make blobs binary
  16. if dataset == "blobs":
  17. Y = Y%2
  18.  
  19. # Visualize the data
  20. plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);

noisy_moons:

noisy_circles:

blobs:

gaussian_quantiles:

其中,load_extra_datasets()函数的定义如下:


  
  
  1. def load_extra_datasets():
  2. N = 200
  3. noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
  4. noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
  5. blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
  6. gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
  7. no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
  8. return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure

好了,本节课的内容到此为止啦!


更多更详细的内容,请访问原创网站:

http://www.missshi.cn/api/view/blog/59abda2fe519f50d0400018f

Ps:初次访问由于js文件较大,请耐心等候(8s左右)


  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值