「分治法」最大子段和问题

最大子段和问题解析

一、问题描述

给定由n个整数组成的序列(a1, a2, …, an),最大子段和问题要求该序列形如∑ak (i <= k <= j) 的最大值(1≤i≤j≤n)。

当序列中所有整数均为负整数时,定义最大子段和为0。例如,序列(-20, 11, -4, 13, -5, -2)的最大子段和为11 - 4 + 13 = 20。

{5,-3,4,2}的最大子序列是 {5,-3,4,2},它的和是8,达到最大;{5,-6,4,2}的最大子序列是{4,2},它的和是6。

注意,要求这个子段必须是连续的。

二、问题分析

请添加图片描述
首先还是采用分治的方法,将该序列分成相等的两端,然后递归的求出左边的最大子段和以及右边的最大子段和。

但是这个就会出现和上一题“最近点对距离”一样的问题:如果最大子段和不是在左右两边,而是在中间怎么办?也就是上图3的部分。

那么也就意味着,我们进行子问题的划分之后,还是会出现三种情况:

  1. 最大子段和是左边的最大子段和
  2. 最大子段和是左边的最大子段和
  3. 最大子段和是中间部分的最大子段和

所以也就导出了我们的解决方法:先递归求解情况1和2,然后再单独处理问题3。
请添加图片描述

三、算法设计

#include <iostream>
using namespace std;

int maxSum(int a[],int left,int right) {
   
   
    int sum = 0;
    if
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值