大数据分析专业毕业设计最新最全选题精华汇总-持续更新中叁

目录

前言

开题指导建议

更多精选选题

选题帮助

最后


前言

大家好,这里是源码空间站学长大数据分析专业毕业设计毕设专题!

大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了大数据分析专业最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!

以下是学长精心整理的一些选题:

251基于python的网上订餐系统的设计与实现如何使用python语言开发一个网上订餐系统 ,本系
统将严格按照软件开发流程进行各个阶段的工作,采
用B/S架构,网上订餐系统的主要使用者分为管理员
、商家和用户,实现功能包括管理员:首页、个人中
心、个人信息、菜品类型管理,论坛管理、系统管理、
商家管理、菜品信息管理、投诉建议管理、用户管理、
订单信息管理、评价信息管理等等。商家管理:个人
中心、个人信息、菜品信息、投诉建议管理、订单信
息管理、评价信息等功能。用户管理:个人中心、个
人信息、投诉建议管理、订单信息管
理、评价信息、我的收藏等等。
252农产品电商交易数据分析系统的设计与开发本主要是利用大数据技术对典型农产品电商企业的
生鲜产品交易进行数据分析,开发出一套面向农产
品电商交易的数据分析系统,为企业提供农产品价
格预测、农产品个性化推荐从而实现农产品电商精
准营销。本系统可完美地解决以往营销决策的漏洞。
通过网络爬虫进行抓取全国各地的销售数据,再经
过数据的处理清洗,之后再放入模型中进行数据预
测,最后将预测的结果通过AJAX技术无刷新的实时
更新在系统中,显示给用户。
253大数据的疫情分析与可视化系统从各省累计确诊人数随时间增长的态势以及空间分布
随时间增长的态势入手,利用所收集的数据将各省累
计确诊人数的时空分布用地图、折线图、堆叠条形图
的形式呈现出来,从总体态势进行大致分析,然后再
通过在不同粒度上展示各省疫情相关的详细信息,以
发现其在不同时间段影响其态势变化的原因(境外输
入、相关政策颁布等)。同时还将疫情相关确诊、死
亡等数据与各省的GDP、受教育程度、城镇化率、医
疗卫生水平进行联系,以发现其与GDP、受教育程度、
城镇化率之间是否存在关系。其目标用户是政府等防
控机关,通过本系统可以分析疫情时空分布模式、监
控疫情发展态势、评估疫情防控措施。
254基于python的汽车信息爬取设计与分析利用网络爬虫技术从某汽车门户网站采集汽车数据,
并利用 Flask + Echarts 前后端框架, 实现对汽车
数据的可视化分析,包括不同品牌汽车的评分、
车型级别、车身结构、发动机、变速箱和指导价
等维度进行可视化统计分析。
255基于大数据的高考志愿辅助填报系统设计与实现分析了考生在志愿填报过程中可能遇到的各类问题,
通过大数据分析与数据挖掘,建立了高校招生信息
数据挖掘系统,并应用 ASP.NET MVC 设计模式,
在.NET 平台上开发了 B/S结构高考志愿辅助填报系
统,提供院校/专业查询,具有数据分析、投档分析、
模拟填报等功能。
256大数据下的音乐推荐系统开发本基于大数据的音乐推荐系统首先从目前在线音乐
现状和问题出发,分析基于大数据的音乐推荐系统
开发意义。然后结合Python编程和MySQL数据库
存储数据。最后对系统进行设计说明和编码实现,
基于大数据的音乐推荐系统包括了注册登录、音乐
管理、音乐推荐、管理员管理等功能。基于大数据
的音乐推荐系统的实施,对音乐发展提供了极大的
帮助,提高了音乐传播效率,方便了会员音乐欣赏。
257基于大数据的高校毕业生就业系统的设计与实现以大数据分析为主基础,通过对于毕业生就业各种
方向的分析,设计实现一种较为全面的高校毕业生
就业系统。系统主要以高校毕业生的需求分析和就
业实际情况分析寻找相通处,并通过算法工具就行
研究,增强对高校应往届毕业生在就业领域上的指导作用。
258大数据分析下大学生行为记录和分析系统的设计与实现利用大数据分析技术分析学生的在校行为,包括大学
生行为记录、大学生行为分析、后台管理三大模块。
通过记录学生的在校情况,如出勤、请销假、作业、
留校、离校、未到校等情况,将统计分析的结果作
为学生在校行为的判断,教师可以及时掌握相关信
息并做出及时的处理,有效提高了管理质量和监管效率。
259MapReduce大数据表连接查询处理算法优化与设计利用共享信息减少中间数据的网络传输的两表连接算法,在此基础上提出利用流水线模型提高多任务的并发性,来优化由多个两表连接的构成的多表连接。首先针对传统两表连接,在网络传输过程中冗余数据过多的缺陷,提出一个基于连接键信息共享的两表连接算法。该算法的思路是在传统连接算法基础上,加入利用“背景”数据过滤冗余数据的步骤。利用Bit-Map算法对其中一个表的连接键信息进行压缩,制成用于共享的“背景”信息,利用分布式缓存机制进行共享。之后再进行两表连接时,在Map函数中通过共享信息将另一个表中无法连接的元组进行剔除,从而减少在网络中传输中间结果的数据量,提高传输效率缩短响应时间其次由于传统多表连接算法只能顺序执行连接任务,从而导致任务等待时间过长,造成系统资源浪费。因此引入流水线模型来优化算法,使其能够并行执行连接任务,进一步的优化多表连接算法。通过利用任务调度器,协调多个任务并发,合理的利用不同表之间利用Map机群和Reudce机群运行时间上的空档,提前执行MapReduce任务,增强系统的并行性,与此同时,为了进一步提高连接效率,对连接顺序的选取策略进行研究,以期充分发挥基于共享信息的流水线模型优化算法的优势,通过调整多表之间的连接顺序,达到减少中间结果的目的。
260Spark应用于菜品推荐系统的设计与实现在大数据环境下通过信息化技术推测顾客对菜品、口味的偏好,并向顾客智能推荐菜品结果。为便于顾客在众多的菜系中选择符合自身口味的菜品,设计开发一款个性化菜品推荐系统,系统采用协同过滤推荐算法,根据顾客对菜品的历史评分数据,使用Hadoop平台对其进行存储,然后通过Spark框架MLlib库中的ALS算法进行计算,得到菜品推荐列表,最终通过页面向用户进行展示,在一定程度上满足顾客的个性化需求。
261Spark离线与实时的电影推荐系统设计与实现为了向用户推荐满足自己偏好的高质量电影,设计并实现一个电影推荐系统。采用ALS作为协同过滤算法训练隐语义模型,结合矩阵分解推荐算法可解决推荐系统存在的数据稀疏性问题,通过不断调参找出最优参数组合,隐语义模型训练完成后可以得到所有的预测评分,基于预测评分和真实评分可得到理想的RMSE和MAE,在电影推荐系统里为用户带来更好的推荐效果,在用户登录系统后增加选择用户喜爱影片类别标签页,可解决推荐系统面临的新用户冷启动问题。实时推荐方面,对基于物品的协同过滤算法进行改进,通过增加奖励因子和惩罚因子作为权重因子,针对用户最近的电影评分,使备选电影的推荐优先级得到进一步提升,可快速定位用户近期的偏好影片类别,将高分电影推荐给用户。
262使用Neo4j和Spark构建对农产品溯源数据的分析平台农产品溯源数据主要以企业与农产品两两之间的关系组成,符合大规模关联性数据的特征。将图数据相关技术与农产品溯源数据相融合,使用图数据库Neo4j与分布式计算系统Spark设计并实现农产品溯源数据分析平台,以便提取出隐藏在溯源数据中的有价值信息,进一步保障农产品安全。可选功能点:对相关技术与算法进行综述研究,介绍图数据库、图计算系统与前后端研发相关技术选型;研究主流图算法的运行原理、执行流程以及在对农产品溯源数据分析时所起到的作用。对平台的功能需求进行详细分析,并以微服务思想为设计理念,根据需求分析的结果将平台的功能进行模块化划分与总体架构进行设计,使用UML图、架构图、功能执行图与时序图描述对平台的具体功能设计,依据NGDS与Cypher设计图数据单机分析算法、依据Graph Frames库设计图数据分布式计算函数。根据设计方案,引入Spark、Neo4j与HDFS作为数据分析与存储的核心组件、引入Nacos、Sentinel作为服务发现与流量监控的基础组件;使用Java框架Spring Boot开发溯源数据管理与单机数据分析接口;使用Python框架Flask开发分布式数据分析接口;使用Java Script框架Vue.js与Cytoscape.js开发前端页面与图数据可视化功能。
263煤矿安全预警系统设计一种煤矿安全预警系统。该系统由数据采集模块、网络模块、大数据处理模块、客户端模块和井下报警模块5部分构成。其中大数据处理模块具有接收实时环境数据和通过预警模型判断是否预警的功能。此模块可采用遗传算法对支持向量机进行参数寻优,建立安全预警模型后使用大量样本对该模型进行训练。在大数据处理模块上搭建Spark并行计算框架,在此框架上加载已训练的安全预警模型,并采用Spark Streaming接口接收实时数据,对井下环境数据进行并行计算;然后通过安全预警模型进行安全预测,将预测结果实时发送至手机APP、计算机客户端和井下报警模块。达到提高煤矿安全预警系统预测的准确性并降低预警的时延。
264大数据清洗框架设计与实现基于Spark设计一套大数据清晰框架,其原理是充分利用Spark分布式计算能力将弹性分布式数据集的操作封装成大数据清晰的任务单元,通过形成较为完整的大数据清晰流水线完成大数据清晰。基于Spark的大数据清洗框架能够降低大数据清洗的成本,并且能够有效的促进大数据清洗性能水平的提升,为大数据处理应用技术的发展提供有效的保障,奠定坚实的基础。
265Hadoop交通信息并行处理系统设计与研究Hadoop分布式并行计算框架进行设计,要求框架具备良好容错性、扩展性和可靠性,能够对数据批量写入。并且分析框架的体系结构,将此框架作为基础设计系统架构,其主要包括数据采集层、应用层、存储层与分析层,对数据进行分析,并且在计算机集群中存储。之后,设计系统的模块,包括数据接入、数据存储、交通应用和数据处理等模块。通过实时数据处理实现数据传输,利用数据接入、核心计算和存储创建实时处理模块,并且对数据进行预处理。
266Hadoop应用于车辆管理系统的设计与实现以Hadoop为核心搭建三层架构,数据存储层利用数据采集接口接收交警侧采集终端传输的车辆数据,经数据加载、查询、存储后,通过数据访问服务接口将数据传输至服务层.服务层利用Min-Max方法获取车辆移动近似节点和车辆短时位置信息,获取最终的车辆节点定位结果,可实现车辆历史信息查看和预警信息发送,同时将逻辑处理结果经服务通信接口传输至显示层显示.要求系统的吞吐量,可允许大批量用户同时访问;车辆定位结果的均方根误差低,定位精确;系统执行时间低,可快速响应用户需求。
267使用Hadoop构建高校图书馆阅读书目智慧推荐系统推荐系统模型包括图书馆自动化系统、电子图书数据库、推荐模块组成。以Hadoop技术收集分析不同源的数据,使用MapReduce搭建模型框架,通过Mahout算法实现基于共现矩阵的图书相似度推荐,利用皮尔森相似度计算公式推荐图书。读者可以收到推荐系统给予的3种推荐:馆内预约借阅、全文电子书阅读与下载、图书购买。
268基于Python+ECharts的手机销售数据可视化系统通过爬虫技术,对淘宝手机销售数据进行分类爬取,利用Python中的Pandas库对数据进行清洗和分析,将清洗完的数据迁移进MySQL中,利用Flask搭建销售数据可视化界面,通过Flask+ECharts的方式制作可视化大屏,将Flask的网站所有功能集结一起,让用户更加直观明确地查看数据分析结果,帮助消费者更好地了解个人需求;帮助销售公司更直观地了解市场需求,进而推动产品销量。  
269社区疫情防控系统本论题要求设计并实现社区疫情防控系统。疫情防控系统分为前台和后台两部分,其中前台部分主要是给用户使用的,主要功能包括,用户的注册登录,查看疫情公告,在线交流,志愿者报名,体温上报管理,行踪上报管理,健康码上传管理,异常上报管理等功能,后台管理员功能主要包括个人中心,用户管理,体温上报管理,轨迹上报管理,健康码上传管理,收费类型管理,收费信息管理,收费信息,志愿者报名管理,报名信息管理,异常上报管理,系统论坛,系统管理等功能,通过这些功能可以更好的对疫情进行防控。
270基于大数据分析的金融产品销售预测本论题要求根据客户的信息,将客户进行分类打上标签,预测该用户是否会购买理财产品以及是否需要对该用户进行主动销售。
271基于大数据新闻推荐系统本论题要求设计并实现基于大数据新闻推荐系统。该系统通过对推荐系统中用户所喜好的新闻和所阅读的新闻等行为做记录和研究;得出用户的偏好,由此向用户推荐适合他的阅读服务。要求系统能正常运行;详细阐述出该系统各部分功能模块的设计与实现的过程、工作原理,并对系统进行测试,校验系统的性能。
272航空公司客户价值分析系统准确的客户分类的结果是企业优化营销资源的重要依据,本论题要求利⽤了航空公司的部分数据,利用分类算法,对航空公司的客户进行分类,来识别不同的客户群体,从而发现有用的客户,从而对不同价值的客户类别提供个性化服务,指定相应的营销策略。
273基于大数据Hadoop的企业财务管理系统本论题要求设计并实现基于大数据Hadoop的企业财务管理系统。要求系统能正常运行;通过该系统实现财务管理等功能。
274基于机器学习的营销数据分析本论题要求基于机器学习数据库中的银行营销数据集,从对数据集进行探索,数据预处理和特征工程,到学习模型的评估与选择,较为完整的分析银行营销数据。
275电力窃漏电用户自动识别系统本论题要求设计并实现电力窃漏电用户自动识别系统。通过采集电量异常、负荷异常、终端报警、主站报警、线损异常等信息,建立数据分析模型,来实时监测窃漏电情况和发现计量装置的故障。根据报警事件发生前后客户计量点有关的电流、电压、负荷数据情况等,构建基于指标加权的用电异常分析模型,实现检查客户是否存在窃电、违章用电及计量装置故障等。
276基于大数据的个性化阅读推荐系统本论题要求设计并实现基于大数据的个性化阅读推荐系统。该系统通过对推荐系统中用户所喜好的书籍和所下载的书籍等行为做记录和研究;得出用户的偏好,由此向用户推荐适合他的阅读服务。要求系统能正常运行;详细阐述出该系统各部分功能模块的设计与实现的过程、工作原理,并对系统进行测试,校验系统的性能。
277基于大数据的淘宝用户行为分析本论题要求设计并实现基于大数据的淘宝用户行为分析。用户行为分析是对用户在产品上的产生的行为及行为背后的数据进行分析,通过本次分析实现:1、通过构建用户行为模型和用户画像,来改变产品决策,实现精细化运营,指导业务增长。2、 在产品运营过程中,对用户行为的数据进行收集、存储、跟踪、分析与应用等,可以找到实现用户自增长的存在的问题、群体特征与目标用户。
278大学生社团管理系统本论题要求设计并实现大学生社团管理系统。本系统采用Python+djang进行开发,分为前台和后台两部分,前台部分主要是让用户进行注册登录,参加社团活动和查看新闻资讯内容等进行服务的。后来部分主要是让管理人员对学生社团进行管理使用的。
279音乐推荐系统的分析及应用本论题要求根据用户的听歌习惯,采集数据,推测用户的爱好,进行分析、推荐。
280基于Hadoop的公共自行车数据分布式存储和计算为了对公共自行车的信息进行更加精准的掌握,以及使用人群的分布。对数据进行挖掘,计算。
281Spark环境下场景图像的分类研究 随机森林算法在场景图像分类中的应用,设计到对图像特征提取预处理及特征聚类等前期工作,适合在spark环境下进行部署实验。
282大数据环境下人们工作模式的变革随着信息时代的到来,人们的生活方法也发生了翻天覆地的变化,工作模式也随之变化,催生了一大批新兴工作模式。
283疫情环境下大数据的应用分析疫情环境、数据分析
284基于MapReduce的气候数据的分析近些年极端天气增加,气候的多变很难预测,这些现象的发生是别什么影响的,可对一段时间内的气候数据采集、计算,分析。
285基于Spark的房产大数据分析与实现采用Scrapy框架进行爬虫程序的编写,Scrapy-Redis组件实现Scrapy分布式爬取;使用Spark进行数据分析,线性回归算法进行放假预测。该系统能帮助人们了解房产大数据,从中发掘出二手房的分布、价格、地理位置等信息。

学长作品实例:

【【大数据分析专业毕设选题参考2025】基于hadoop+hive的全国天气大数据分析+机器学习算法预测D2025001】 https://www.bilibili.com/video/BV1hssYeAEDV/?share_source=copy_web&vd_source=3d18b0a7b9486f50fe7f4dea4c24e2a4

【(大数据分析项目参考案例)基于Hadoop+hive的懂车帝汽车大数据分析平台】 https://www.bilibili.com/video/BV1Mm411B73y/?share_source=copy_web&vd_source=3d18b0a7b9486f50fe7f4dea4c24e2a4

开题指导建议
选题迷茫
毕设开题阶段,同学们都比较迷茫该如何选题,有的是被要求自己选题,但不知道自己该做什么题目比较合适,有的是老师分配题目,但题目难度比较大,指导老师提供的信息和帮助又比较少,不知道从何下手。与此同时,又要准备毕业后的事情,比如考研,考公,实习等,一边忙碌备考或者实习,一边还得为毕设伤透脑筋。

选题的重要性
毕设选题其实是重中之重,选题选得是否适合自己将直接影响到后面的论文撰写和答辩,选题不当很可能导致后期一系列的麻烦。

选题难易度
选题不能太难,也不能太简单。选题太难可能会导致知识储备不够项目做不出来,选题太难,则可能导致老师那边不同意开题,很多同学的课题被一次次打回来也是这个原因之一。

工作量要够
除非是算法类或者科研性项目,项目代码要有一定的工作量和完整度,否则后期论文的撰写会很难写,因为论文是要基于项目写的,如果项目的工作量太少,又缺乏研究性的东西,则会导致很难写出成篇幅的东西。
————————————————

更多精选选题

【大数据分析专业毕设选题海量推荐】 https://www.bilibili.com/video/BV1ce4y167V1/?share_source=copy_web&vd_source=3d18b0a7b9486f50fe7f4dea4c24e2a4

http:// https://www.bilibili.com/video/BV1ce4y167V1/?share_source=copy_web&vd_source=3d18b0a7b9486f50fe7f4dea4c24e2a4

      

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源码空间站TH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值