源码空间站11
码龄5年
关注
提问 私信
  • 博客:748,859
    社区:249
    动态:3,689
    视频:52
    752,849
    总访问量
  • 854
    原创
  • 1,604
    排名
  • 6,316
    粉丝
  • 59
    铁粉

个人简介:高级工程师,万套源码分享,绿泡bysj886

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2019-11-04
博客简介:

laoman456的博客

查看详细资料
  • 原力等级
    当前等级
    6
    当前总分
    2,645
    当月
    298
个人成就
  • 获得10,846次点赞
  • 内容获得88次评论
  • 获得9,681次收藏
创作历程
  • 121篇
    2025年
  • 354篇
    2024年
  • 199篇
    2023年
  • 181篇
    2022年
成就勋章
TA的专栏
  • 网络安全
    8篇
  • 深度学习
    4篇
TA的推广
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

基于ensp的企业网络规划设计仿真.zip

发布资源 16 小时前 ·
zip

校园网络规划与设计

本校园网络设计方案通过合理配置路由器、交换机、防火墙、接入点和VLAN,确保了网络的高效性、安全性和可管理性。技术栈的使用包括TCP/IP、HTTP、FTP、ACLs、NAT和WPA2/WPA3等,满足了不同区域网络的需求。
原创
发布博客 16 小时前 ·
455 阅读 ·
8 点赞 ·
0 评论 ·
6 收藏

基于ensp的校园网络规划仿真

发布资源 16 小时前 ·
zip

基于多维度机器学习算法的共享单车需求预测与可视化

本项目通过使用三种常见的机器学习算法(线性回归、随机森林和支持向量机)来预测共享单车的需求。通过 Flask 提供 Web 服务,展示预测结果并进行数据可视化。该系统可以帮助商家进行更精确的需求预测,优化单车调度和运营管理。具体功能演示效果:【基于多维度机器学习算法的共享单车流量预测与可视化分析(随即森林+svm+线性回归模型)S2025022】基于多维度机器学习算法的共享单车流量预测与可视化分析(随即森林+svm+线性回归模型)S2025022_哔哩哔哩_bilibili。
原创
发布博客 2025.03.24 ·
576 阅读 ·
16 点赞 ·
0 评论 ·
27 收藏

基于 Python + Flask 的唯品会女装可视化

该开发文档详细介绍了基于 Flask 的唯品会女装可视化系统的功能、数据库设计、模块划分以及部署流程。系统结合了后端 Flask 框架和前端数据可视化技术,提供了一个展示唯品会女装商品数据的交互式平台。通过本项目,商家能够更好地分析和优化女装商品的销售策略,并通过后台管理系统进行商品数据管理。S2024009计算机毕设之基于python+flask爬虫的唯品会女装数据分析可视化系统_哔哩哔哩_bilibili。
原创
发布博客 2025.03.24 ·
844 阅读 ·
20 点赞 ·
0 评论 ·
24 收藏

基于Python+Flask的公共场所踩踏事故预警系统(多元线性回归算法)

随着城市化进程的加快,公共场所的规模和人流量不断增加,尤其在节假日、重大活动期间,踩踏事故的发生频率也呈现上升趋势。本项目通过结合机器学习算法和Web技术,构建一个基于数据的预警系统,利用历史人流量、天气、区域等数据对公共场所的踩踏事故风险进行多元预测,从而提前发出警报,减少灾难发生的概率。xisu = (x['人流量'] * x['持续时间']) # 示例:人流量与持续时间的交互特征。types_set = list(set(types1)) # 获取不同区域类型。# 其他的特征计算逻辑。
原创
发布博客 2025.03.24 ·
703 阅读 ·
24 点赞 ·
0 评论 ·
16 收藏

基于 Python + Django 物流可视化分析系统

该项目是一个基于 Python 和 Django 框架的物流可视化分析系统,旨在提供实时物流数据展示、用户管理和数据可视化分析功能。用户可以查看物流数据、进行数据分析,并通过图表展示结果。
原创
发布博客 2025.03.21 ·
837 阅读 ·
22 点赞 ·
0 评论 ·
29 收藏

基于国密算法的家庭理财管理系统

该项目是一个基于 Spring MVC 和 MyBatis 的 Java Web 应用,旨在提供用户管理、收入管理、支付管理等功能,结合前端的 JSP 页面进行展示。项目采用典型的多层架构设计,主要包括数据访问层、业务逻辑层和表现层。
原创
发布博客 2025.03.21 ·
956 阅读 ·
16 点赞 ·
0 评论 ·
30 收藏

基于数字签名技术的学生选课系统

该系统是一个基于数字签名技术的学生选课系统,旨在实现一个安全、可靠的选课平台。通过使用数字签名技术,确保学生选课操作的合法性与数据的完整性,并为管理员提供对选课操作的审核功能。数字签名保证了信息传输过程中的身份验证、数据完整性以及不可否认性。
原创
发布博客 2025.03.19 ·
655 阅读 ·
14 点赞 ·
0 评论 ·
16 收藏

基于Python+Flask+时间序列的天气可视化与预测系统

该项目使用Flask框架开发,主要功能包括天气数据的抓取、存储、可视化展示以及基于时间序列预测模型(如Prophet)进行未来天气预测。系统通过爬虫从网站抓取数据,将其存入数据库,随后进行可视化展示和天气趋势预测。
原创
发布博客 2025.03.19 ·
1052 阅读 ·
42 点赞 ·
0 评论 ·
26 收藏

近10年国内地震数据集,数据量大概14000条,字段包含id 详情id 震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置

发布资源 2025.03.18 ·
csv

基于 PyQt 的文件加密与数字签名系统设计与实现

本项目是一个基于 PyQt5 的 GUI 文件加密和数字签名工具,采用 AES + RSA + SHA-256 进行安全保护,确保文件的机密性、完整性和真实性
原创
发布博客 2025.03.18 ·
882 阅读 ·
20 点赞 ·
0 评论 ·
14 收藏

基于python+贝叶斯分类+LDA的商品评论数据采集分析可视化系统 爬虫+情感分析

本项目旨在采集电商平台商品评论数据并进行简单的 NLP 与可视化分析,最终通过Flask框架提供 Web 展示。爬虫:使用 Python + requests 抓取电商评论数据。数据库存储:将采集的评论写入 MySQL 数据库。文本分析:使用多种常见 NLP 库对数据进行情感分析(SnowNLP)、LDA 主题建模(gensim)以及朴素贝叶斯分类(scikit-learn)。可视化展示:Flask 后端调用数据或读入分析结果,并使用前端模板 + JavaScript 图表库来进行可视化呈现;
原创
发布博客 2025.03.18 ·
1705 阅读 ·
32 点赞 ·
0 评论 ·
11 收藏

基于大数据的亚健康人群的分析系统的设计与实现

项目定位:以“亚健康资讯”为核心内容的前后端分离后台管理和前台访问两套 Vue 工程。主要特征分层清晰:Entity (表) + Service + Mapper + Controller数据库表yonghuusersstoreupdiquxinxi等可拓展:包含以对接 HDFS,但尚未实现深入大数据分析典型增删改查:MyBatis-Plus + Vue Element UI 的组合二次开发建议前端美化:若需要更丰富的 UI,可在 Element 基础上自定义主题或引入其他组件库。大数据分析。
原创
发布博客 2025.03.17 ·
1038 阅读 ·
27 点赞 ·
0 评论 ·
30 收藏

基于pyqt+keras的手写英文字母智能识别系统

基于pyqt+keras的手写英文字母智能识别系统
原创
发布博客 2025.03.17 ·
914 阅读 ·
12 点赞 ·
0 评论 ·
28 收藏

基于 pyqt+ PyTorch的手写英文字母识别

本项目旨在实现一个完整的手写英文字母识别系统,从数据准备、模型训练到前端界面的推断过程。该项目可作为毕业设计或学习项目的基础范例,后续可扩展至更大规模数据集、更复杂的网络结构,以及更多字符(如大小写、数字、标点符号等)的识别。
原创
发布博客 2025.03.17 ·
915 阅读 ·
15 点赞 ·
0 评论 ·
28 收藏

基于机器学习的智能防火墙与入侵检测系统

系统能够通过对网络流量进行分析,自动识别潜在的恶意活动或入侵行为,并进行响应。该系统利用机器学习算法,学习正常流量和攻击流量的特征,从而提高检测精度,并减少误报率。data['flow_duration'] = data['flow_duration'].apply(lambda x: float(x)) # 流持续时间。在实时流量检测时,系统会将每个数据包的特征输入到训练好的模型中,判断其是否为恶意流量。一旦检测到恶意流量,系统会自动更新防火墙规则,将恶意流量的IP或端口加入黑名单。
原创
发布博客 2025.03.15 ·
711 阅读 ·
25 点赞 ·
0 评论 ·
14 收藏

基于机器学习的恶意DNS查询检测系统

本项目通过结合机器学习和DNS查询数据,成功实现了恶意DNS查询的检测系统。data['query_type'] = LabelEncoder().fit_transform(data['query_type']) # 查询类型编码。data['src_ip'] = LabelEncoder().fit_transform(data['src_ip']) # 源IP编码。y = data['is_malicious'] # 标签,恶意查询为1,正常查询为0。# 绘制恶意查询与正常查询的分布。
原创
发布博客 2025.03.15 ·
836 阅读 ·
9 点赞 ·
0 评论 ·
17 收藏

基于安卓原生开发的美食菜谱推荐app---毕业设计

美食菜谱推荐App是一款基于Android平台的应用,旨在为用户提供菜谱浏览、搜索以及个性化推荐功能。用户可以通过该应用浏览菜谱、选择食材、查看推荐的菜谱,甚至上传自己的菜肴照片。该系统主要采用SQLite数据库存储用户数据、菜谱信息及用户评分等。【计算机毕设之基于安卓美食菜谱推荐app(s2025014)】// 解析JSON并更新UI。
原创
发布博客 2025.03.15 ·
1085 阅读 ·
29 点赞 ·
0 评论 ·
13 收藏

基于机器学习算法的网络端口扫描检测系统(Python控制台)

上述示例代码展示了一个基于机器学习控制台交互数据准备:将采集到的网络流量记录(带标签)整理成 CSV。特征工程:提取若干数值特征(如连接数、TCP Flags 等),并进行适度处理(One-hot 编码、归一化等)。模型训练:使用随机森林进行分类,评估准确率、精确率、召回率、F1-Score;实时/离线检测:将新连接记录输入训练好的模型,对是否为扫描行为进行预测,并返回检测结果。
原创
发布博客 2025.03.14 ·
768 阅读 ·
24 点赞 ·
0 评论 ·
21 收藏
加载更多