本文所使用的 CodeBuddy 免费下载链接:腾讯云代码助手 CodeBuddy - AI 时代的智能编程伙伴
没事我就喜欢瞎折腾,怀旧回忆过去,儿时的碰碰车的精彩刺激的场景总令我难以忘怀,这次遇到一款开发神器,CodeBuddy对话式编程,分分钟帮我实现一个线上的碰碰车小游戏,满足我珍藏多年的情怀。
如果你和我一样对编程有着深刻爱好,但是又不想花费太多精力在底层代码调试上。
请看本文:新手小白也能玩——CodeBuddy带我写碰碰车小游戏
1. 项目概述
本项目是一个基于HTML5 Canvas的碰碰车小游戏,玩家可以控制一辆红色碰碰车在游戏场地内移动,与AI控制的其他碰碰车竞争收集星星获取分数。游戏具有物理碰撞系统、AI行为控制、障碍物避让、星星收集等核心功能,完全使用原生JavaScript实现,无需任何外部库或框架。游戏通过Canvas 2D API进行渲染,实现了流畅的60FPS游戏体验。
本游戏的核心亮点在于其复杂而智能的AI系统,AI车辆能够自主寻找最佳目标,避开障碍物,处理碰撞,以及在困境中自我解救。这种智能行为使游戏具有很高的可玩性和挑战性。
与CodeBuddy对话输入指令如下:
自动编写代码如图右侧所示。
2. 项目策划
2.1 游戏定位与目标
本游戏定位为一款休闲竞技类游戏,目标是创造一个简单易上手但又有一定深度的游戏体验。主要目标包括:
- 创建一个流畅、响应迅速的碰碰车控制系统
- 实现智能的AI对手,能够提供有挑战性的游戏体验
- 设计简单明了的游戏规则和目标(收集星星获取分数)
- 实现物理碰撞系统,使车辆之间的互动更加真实
- 通过障碍物增加游戏的策略性和复杂度
2.2 游戏机制设计
- 核心玩法:玩家控制碰碰车收集星星获取分数,同时与AI车辆竞争。
- 控制系统:使用键盘方向键控制车辆移动,上下键控制速度,左右键控制转向。
- 分数系统:每收集一颗星星获得10分。
- 碰撞系统:车辆之间以及车辆与障碍物之间的碰撞会导致反弹和减速。
- AI系统:AI车辆能够自主寻找星星,避开障碍物和其他车辆。
2.3 技术选型
- 渲染技术:HTML5 Canvas
- 编程语言:JavaScript
- 物理引擎:自定义简化物理系统
- AI系统:基于启发式算法的决策系统
3. 开发步骤
3.1 基础架构搭建
- 创建HTML页面和Canvas元素
- 设置游戏循环(requestAnimationFrame)
- 实现基本的渲染系统
3.2 车辆控制系统开发
- 实现玩家车辆的基本控制逻辑
- 添加物理参数(速度、加速度、减速度等)
- 实现车辆旋转和方向控制
3.3 碰撞系统实现
- 开发矩形碰撞检测算法
- 实现碰撞响应(反弹、减速)
- 添加边界检测和响应
3.4 星星系统开发
- 实现星星的生成和渲染
- 添加星星收集检测
- 实现分数系统和动画效果
3.5 AI系统开发
- 实现基础AI行为(寻找最近星星)
- 添加障碍物检测和避让
- 实现高级AI行为(目标评估、路径规划)
- 开发防卡住机制和自我解救行为
3.6 优化与完善
- 优化渲染性能
- 改进AI决策系统
- 增强视觉效果和反馈
- 添加排行榜和得分显示
4. 功能说明
4.1 玩家控制系统
玩家使用键盘方向键控制碰碰车:
- 上箭头:加速前进
- 下箭头:减速/后退
- 左箭头:向左转向
- 右箭头:向右转向
控制系统采用了物理模型,包括加速度、减速度和最大速度限制,使车辆控制更加真实和平滑。车辆的移动方向由车头朝向决定,而不是简单的上下左右移动,这增加了控制的复杂性和技巧性。
4.2 AI行为系统
AI车辆具有复杂的行为系统,包括:
- 目标选择:AI会评估所有可见的星星,考虑距离、障碍物和其他AI的目标,选择最佳目标。
- 路径规划:AI能够检测路径上的障碍物,并尝试找到无障碍的路径。
- 障碍物避让:多方向检测前方障碍物,并根据情况选择最佳避让方向。
- 防卡住机制:检测是否在原地打转或被卡住,并采取措施脱困。
- 动态速度控制:根据与目标的角度差异调整速度,使转弯更加平滑。
4.3 碰撞系统
游戏实现了完整的碰撞检测和响应系统:
- 碰撞检测:检测车辆之间、车辆与障碍物之间、车辆与边界之间的碰撞。
- 碰撞响应:发生碰撞时,车辆会反弹、减速,并有视觉反馈(颜色变化)。
- 物理模拟:碰撞响应考虑了车辆的速度、方向和质量,使碰撞效果更加真实。
4.4 星星系统
星星是游戏的核心收集元素:
- 随机生成:星星在随机位置生成,但会避开障碍物和车辆。
- 收集机制:车辆接触星星即可收集,获得10分。
- 动态补充:当星星被收集后,会在其他位置生成新的星星,保持游戏场上的星星数量。
4.5 排行榜系统
游戏顶部显示所有车辆的得分情况,实时更新,让玩家了解当前的竞争状态。
5. 主要函数解析
5.1 游戏循环与更新
function gameLoop() {
ctx.clearRect(0, 0, canvas.width, canvas.height);
update();
render();
requestAnimationFrame(gameLoop);
}
function update() {
updatePlayerControls();
// 更新玩家和AI车辆位置
// 检查碰撞和星星收集
}
游戏循环是游戏的核心,负责清空画布、更新游戏状态和渲染游戏画面。使用requestAnimationFrame
确保游戏以最佳帧率运行。
5.2 AI决策系统
function findBestStar(car, forceNew = false) {
// 评估所有星星,考虑距离、障碍物和其他AI目标
// 返回最佳目标星星
}
function isPathBlocked(car, target) {
// 检查从车到目标的路径上是否有障碍物
}
function checkObstaclesAhead(car) {
// 多方向检测前方障碍物
// 决定最佳避让方向
}
function checkIfCircling(car) {
// 检测车辆是否在原地打转
}
这些函数构成了AI决策系统的核心,使AI车辆能够智能地选择目标、避开障碍物、检测困境并采取措施。
5.3 物理与碰撞系统
function checkCollision(car1, car2) {
// 检测两个对象是否碰撞
// 计算碰撞反弹和分离
}
function handleCollision(obj1, obj2) {
// 处理碰撞响应,包括反弹、减速和视觉效果
}
function checkBoundaries(car) {
// 检查车辆是否超出边界,并进行处理
}
这些函数实现了游戏的物理系统,处理碰撞检测、碰撞响应和边界检查。
5.4 渲染系统
function render() {
// 绘制游戏背景、排行榜
// 绘制障碍物、车辆和星星
}
function drawCar(car, angle) {
// 绘制车辆,包括车身、车窗、车灯和轮胎
// 显示车辆名称和分数动画
}
function drawStar(x, y) {
// 绘制星星,包括主体和发光效果
}
渲染系统负责将游戏状态转换为视觉表现,包括绘制车辆、星星、障碍物和UI元素。
6. 关键技术实现
6.1 基于角度的车辆移动
游戏使用基于角度的移动系统,而不是简单的上下左右移动,这使车辆控制更加真实:
const playerAngleRad = playerPhysics.angle * Math.PI / 180;
playerCar.x += playerPhysics.speed * Math.sin(playerAngleRad);
playerCar.y -= playerPhysics.speed * Math.cos(playerAngleRad);
车辆的移动方向由车头朝向(角度)决定,玩家通过左右键改变角度,上下键控制速度。
6.2 多层次AI决策系统
AI决策系统采用多层次结构,从高到低依次为:
- 战略层:选择最佳目标星星
- 战术层:规划路径,检测障碍物
- 操作层:控制速度和转向
这种分层结构使AI行为更加复杂和智能,能够应对各种情况。
6.3 启发式目标评分系统
AI使用启发式算法评估每个可能的目标星星:
let score = 1000 - dist; // 距离越近分数越高
// 检查是否有障碍物阻挡
const blocked = isPathBlocked(car, star);
if (blocked) {
score -= 500; // 有障碍物严重降低分数
}
// 检查其他AI车辆是否也在追逐这个星星
// ...
这种评分系统考虑了多种因素,使AI能够做出更明智的决策。
6.4 多方向障碍物检测
AI使用多方向检测来发现前方的障碍物:
const angles = [0, -30, 30]; // 检测角度数组 [直线前方, 左前方, 右前方]
for (const angleOffset of angles) {
const checkAngle = angleRad + angleOffset * Math.PI / 180;
// 检测该方向是否有障碍物
}
这种方法使AI能够提前发现障碍物,并做出更好的避让决策。
6.5 防卡住机制
游戏实现了复杂的防卡住机制,包括:
- 位置历史记录:记录车辆最近的10个位置
- 打转检测:计算位置历史的中心点和平均距离
- 脱困行为:检测到卡住时,强制切换目标,进入随机游走模式
function checkIfCircling(car) {
// 计算位置历史的中心点和平均距离
// 如果平均距离小于阈值,认为在打转
}
这种机制有效防止AI车辆卡在角落或障碍物旁边。
运行结果如下图所示:
7. 经验教训
7.1 技术选择与实现
- Canvas vs DOM:选择Canvas而不是DOM元素进行游戏渲染是正确的决定,这使游戏能够实现流畅的60FPS,并且简化了复杂图形(如旋转车辆)的绘制。
- 自定义物理系统:为游戏开发了简化的物理系统,而不是使用复杂的物理引擎,这使代码更加轻量和可控,但也带来了一些物理模拟的不准确性。
- AI复杂度平衡:AI系统的复杂度需要与游戏性能平衡,过于复杂的AI可能导致性能问题,特别是在移动设备上。
7.2 开发过程中的挑战
- 碰撞响应:实现真实的碰撞响应是一个挑战,特别是处理多个物体同时碰撞的情况。最终采用了简化的碰撞模型,牺牲了一些物理准确性,但保证了游戏的流畅性和可预测性。
- AI行为调优:AI行为需要大量调优才能既具有挑战性又不会太难。参数如避障距离、目标评分权重等需要反复测试和调整。
- 性能优化:随着游戏功能的增加,性能优化变得越来越重要。采取了多种优化措施,如减少不必要的计算、优化渲染流程等。
7.3 成功经验
- 迭代开发:采用迭代开发方法,先实现核心功能,然后逐步添加和完善其他功能,这使开发过程更加可控和高效。
- 模块化设计:将游戏分解为多个功能模块(渲染、物理、AI等),使代码更加清晰和可维护。
- 参数化设计:将游戏中的各种参数(如速度、加速度、避障距离等)提取为变量,便于调整和优化。
8. 总结与展望
8.1 项目总结
本项目成功实现了一个具有复杂AI行为和物理系统的碰碰车小游戏。游戏具有流畅的控制体验、智能的AI对手和有趣的游戏机制,完全使用原生JavaScript和Canvas技术实现,无需外部依赖。
项目的核心亮点在于其AI系统,AI车辆能够智能地选择目标、避开障碍物、处理碰撞和脱困,这使游戏具有很高的可玩性和挑战性。同时,游戏的物理系统虽然简化,但仍然提供了真实的碰撞和移动体验。
8.2 未来展望
- 多人游戏:添加网络多人游戏功能,使玩家能够与朋友一起游戏。
- 游戏模式:增加更多游戏模式,如计时赛、团队竞争、障碍赛等。
- 自定义地图:添加地图编辑器,让玩家能够创建和分享自己的地图。
- 车辆升级系统:实现车辆升级系统,玩家可以通过收集星星升级车辆的速度、加速度等属性。
- 移动端支持:优化游戏控制和UI,使其能够在移动设备上流畅运行。
- AI进一步优化:使用更先进的算法(如机器学习)来优化AI行为,使其更加智能和具有挑战性。
- 视觉效果增强:添加更多视觉效果,如粒子效果、光照效果等,提升游戏的视觉体验。
- 声音系统:添加音效和背景音乐,增强游戏的沉浸感。
8.3 技术展望
- WebGL渲染:考虑使用WebGL代替Canvas 2D API进行渲染,以提高性能和视觉效果。
- 物理引擎集成:考虑集成成熟的物理引擎(如Matter.js或Box2D),以实现更准确的物理模拟。
- 神经网络AI:探索使用神经网络来训练AI行为,使AI能够学习和适应不同的游戏情况。
- WebAssembly优化:考虑将计算密集型部分(如物理和AI)使用WebAssembly实现,以提高性能。
总的来说,这个碰碰车小游戏项目不仅实现了预期的功能,还展示了JavaScript和Canvas在游戏开发中的强大能力。通过不断优化和扩展,这个游戏有潜力发展成为一个更加完善和有趣的休闲游戏。CodeBuddy在编程中展现了非常强大的逻辑功能。
@CodeBuddy