做了的事和计划做的一些事

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/LaputaFallen/article/details/79194833

书籍:

  1. <机器学习实战>
    已看完,GitHub代码已完成(书中代码是python2,我的是python3)。强烈推荐此书
    链接:https://github.com/hyc2017/MachineLearningInAction
  2. <集体智慧编程>
    已看完。GitHub代码已完成(书中代码是python2,我的是python3)。强烈推荐此书
    链接:https://github.com/hyc2017/collectiveintelligence
  3. <利用Python进行数据分析>
    已看完。工具书
  4. <推荐系统实践>
    已看完。挺好的一本书,看完基本对推荐系统有一定认识了。
  5. <统计学习方法>(李航老师)
    已看完。理论书。SVM这一章讲的非常好。
  6. <数据挖掘导论>
    囫囵吞枣的看,毕竟是导论,讲的不细。可以当作一个学习的目录,有什么想了解的再从里面找。参考文献很多这一点很好。
  7. <机器学习>–周志华
    正在看。
  8. python cook book
  9. pattern recognition and machine learning
  10. elements of statistical learning

视频:

  1. Machine Learning Foundations。台大林轩田老师。
    已看完。计划GitHub习题补完。非常好的一门课,强烈推荐
  2. Machine Learning Technics。台大林轩田老师。
    已看完。计划GitHub习题补完。强烈推荐这门课。
  3. Algorithms.普林斯顿大学Robert Sedgewick教授的一门算法课。对应的书是<算法>第四版。
    正在看书。
  4. MIT Linear Algebra by Gilbert Strang
    课程链接:https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/
    2018/03/06-2018/03/19,视频及笔记,完成!
    正在补全习题集(已补全到第七集)
  5. Essence of calculus
    课程链接:https://www.youtube.com/watch?v=WUvTyaaNkzM&list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr
  6. Introduction to Probability
    课程链接:https://courses.edx.org/courses/course-v1:MITx+6.041x_4+1T2017/course/
  7. Algorithm Design and Analysis
    课程链接:https://courses.edx.org/courses/course-v1:PennX+SD3x+2T2017/course/
  8. Convex Optimization。斯坦福大学的Stephen Boyd老师的凸优化课程。课程链接如下:
    http://web.stanford.edu/~boyd/cvxbook/ (包含pdf和课后习题)
    先搁置,看完线代和微分之后再看这个。
  9. Machine Learning。Andrew NG
    正在看。

编程网站:

  1. LeetCode
    免费题目已经做完。挺好的一个网站(全英文)。关键点是人多,可以探讨各种解法。而且通过post问题,描述自己的解答方案可以锻炼自己的英文表达能力。
    这里写图片描述
    这里写图片描述
    简单题目192道,中等题目313道,困难题目128道。总计633道

  2. GeekForGeek
    很好的一个网站。leetcode主要以题型分类,而GeekForGeek有各种分类,我一般在LeetCode上面遇到什么没见过的算法就会到这里找。

  3. Algorithmist
    最近发现的一个网站。好处是很纯净,只有数据结构和算法相关的东西,而且还有各大竞赛平台的题目。

  4. Codeforces
    计划是等LeetCode题目和题解做完后开始


近期计划:

  • <机器学习实战>,Github代码(已完成)
  • <集体智慧编程>,Github代码(已完成)
  • MIT<线性代数>(2018/03/06-2018/03/19,视频及笔记,完成!)
  • <微分>(开坑~)
  • <概率论>
  • <算法分析>
  • MIT<算法第四版>
  • Andrew NG的<机器学习>视频
  • leetcode刷完了,后续加上python代码的同时会补上问题分析,代码会同步上传到GitHub
  • 最近光刷题了。接下来每天算法和数据结构当然也不会懈怠,可是重心更多地会放到机器学习上面来~

持续更新~~~
你若是天才,我便是疯子。与君共勉~

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页