微服务与分布式
文章平均质量分 93
如何应对微服务与分布式环境下的各种问题和挑战?
无休居士
莫欺中年穷
展开
-
微服务之间的数据依赖问题,该如何解决?
这里我们探讨了服务间的数据依赖问题,并给出了目前较为合适的解决方案。其实这里提到的方案不是一个很大众的方案,肯定会存在一些遗漏的问题没考虑,如果你有更好的方案,欢迎留言讨论。乐于分享和输出干货的Java技术公众号:JavaPersons。原创 2024-10-16 05:00:00 · 1414 阅读 · 0 评论 -
Proxyless的多活流量和微服务治理
Joylive Agent 是一个基于字节码增强的框架,专注于多活和单元化场景下的流量治理。它提供了以下功能:多活流量调度、全链路灰度发布、QPS和并发限制、标签路由、负载均衡,熔断降级,鉴权等流量治理策略。其特性包括微内核架构、强类隔离、业务零侵入等,使其在保持高性能的同时对业务代码影响最小,是面向Java领域的新一代Proxyless Service Mesh探索实现。项目地址:https://github.com/jd-opensource/joylive-agent。原创 2024-10-03 10:47:16 · 1339 阅读 · 0 评论 -
分布式环境中,接口超时重试带来的的幂等问题如何解决?
处理接口超时问题需要综合考虑多个方面,包括设置合理的超时时间、实现重试机制、引入熔断器、加强监控和报警、记录详细的日志、实施限流和降级策略、采用异步处理方式、优化代码和逻辑、合理管理资源以及使用缓存和负载均衡等。通过这些措施,可以有效提升系统的稳定性和可靠性。同时,确保操作的幂等性是处理重试问题的关键,可以避免因重试导致的数据不一致。原创 2024-09-24 05:00:00 · 788 阅读 · 0 评论 -
分布式环境中,接口超时到底怎么处理?
接口超时的原因多种多样,涉及到网络、服务器性能、代码逻辑、配置、资源限制等多个方面。为了减少超时的发生,可以采取以下措施:- 优化网络和服务器性能。- 合理设置超时时间。- 实现重试机制和熔断机制。- 加强监控和报警。- 优化代码和数据库查询。- 提高系统的弹性和容错能力。原创 2024-09-24 05:00:00 · 1178 阅读 · 0 评论 -
突发!!!集群逐步失去响应?怎么办?
虽然这是个较简单的问题,排查的时候也是需要一定的思路的,尤其是发生问题的时间点并往前追溯到第一个不同寻常的日志这个点,这个往往是我们破局的手段。GuavaCache虽然是个使用非常广泛的缓存工具,但不合理的配置依旧会导致灾难性的后果。原创 2024-09-23 03:30:00 · 996 阅读 · 0 评论 -
如何让你提供的接口满足SLA?接口性能优化技巧必看篇
接口性能优化对于从事后端开发的同学来说,肯定再熟悉不过了,因为它是一个跟开发语言无关的公共问题。该问题说简单也简单,说复杂也复杂。导致接口性能问题的原因千奇百怪,不同的项目不同的接口,原因可能也不一样。本文我总结了一些行之有效的,优化接口性能的办法,给有需要的朋友一个参考。原创 2024-09-23 05:00:00 · 1229 阅读 · 0 评论 -
分布式锁的几种方案对比?你了解多少种呢?
如果你需要强一致性和高可靠性,可以选择 Zookeeper;如果需要高性能和低延迟,可以选择 Redis;如果已有数据库基础设施且对性能要求不高,可以选择数据库原创 2024-09-22 02:06:56 · 1505 阅读 · 0 评论 -
分布式环境中解决主从延时的一些思路
主从复制,是指建立一个和主数据库完全一样的数据库环境(称为从数据库),并将主库的操作行为进行复制的过程:将主数据库的DDL和DML的操作日志同步到从数据库上,然后在从数据库上对这些日志进行重新执行,来保证从数据库和主数据库的数据的一致性。但是由于分布式环境中网络等不稳定因素存在,主从延迟基本时长发生,如何破解呢?原创 2024-09-22 01:14:59 · 996 阅读 · 0 评论 -
【实践】分布式环境下工作中10种常用的幂等性手段?
在分布式系统中,确保接口的幂等性是至关重要的,可以防止因网络问题或重复请求导致的数据不一致。常见的实现手段包括使用唯一请求标识、分布式锁、版本控制、消息队列去重、状态机、全局唯一ID、补偿机制、幂等性设计模式和数据库约束。这些方法能够有效保证操作的一致性和可靠性,适用于支付、订单处理、日志记录等多种场景。通过合理选择和应用这些技术,可以显著提升系统的稳定性和用户体验。原创 2024-09-22 04:00:00 · 868 阅读 · 0 评论 -
如何保证高并发下接口的幂等性?
接口幂等性是指一个接口无论被调用一次还是多次,其结果都是一样的,不会因为重复调用而产生不同的副作用。这种特性对于保证系统的稳定性和数据一致性至关重要,尤其是在网络不稳定或请求可能重试的情况下。实现幂等性的常见方法包括使用唯一标识符、状态机、数据库约束等,确保同一操作不会被处理多次。通过设计幂等接口,可以大大减少因重复请求导致的数据错误和系统异常。原创 2024-09-21 05:00:00 · 636 阅读 · 0 评论 -
接口幂等性和并发安全的区别?
幂等性:关注的是同一操作的多次调用结果是否一致。并发安全:关注的是在并发环境下操作的正确性和一致性。理解这两个概念有助于设计更健壮的系统和API。原创 2024-09-18 23:57:18 · 507 阅读 · 0 评论 -
你天天用微服务还不知道心跳检测机制是什么?
心跳检测机制是一种保持连接状态和验证服务实例是否存活的技术。服务提供者:主动发送心跳包的服务方。服务消费者:接收心跳包并验证服务状态的一方。服务注册中心:用于管理服务实例的注册和发现,通常也是心跳检测的中心节点。Eureka:专注于服务发现,适用于 Spring Cloud 生态系统。Consul:提供全面的服务管理功能,适合需要更复杂服务管理的场景。Zookeeper:适用于需要强一致性和协调服务的场景。Etcd:适用于需要简单键值存储和配置管理的场景,特别是在容器编排系统中。原创 2024-09-13 01:55:58 · 1513 阅读 · 0 评论 -
分布式存储系统中HDFS和OSS有什么区别?如何选择?
HDFS更适合于需要强一致性、高吞吐量和批处理作业的大数据场景,而OSS则更适合需要可扩展、低成本、高可用性和易于管理的大规模非结构化数据存储场景。HDFS(Hadoop Distributed File System)和OSS(Object Storage Service)都是用于存储数据的系统,但它们在设计、架构和使用场景上有明显的不同。OSS底层实现原理涉及分布式系统架构、数据复制与一致性、对象存储模型、数据索引与检索、数据生命周期管理等多个方面,旨在提供可扩展、可靠、安全且经济高效的存储解决方案。原创 2024-09-12 07:00:00 · 1333 阅读 · 0 评论 -
再有人问你什么是分库分表,直接把这篇文章发给他
本文介绍了分库分表的一些原因,以及如何做分库分表,并且讨论了其中比较关键的分表字段和分表算法的问题。还介绍了几款比较不错的分库分表的相关框架。最后,还有一些需要大家注意的就是分库分表会引入一些新的问题,这些问题的解决成本也都不低,所以在做技术选型的时候也要做好这方面的评估。原创 2024-09-09 13:47:39 · 1459 阅读 · 0 评论 -
自己部门日均1000+告警?如何减少90%无效告警?
告警治理的核心在于提高告警的质量,减少无效告警的数量,确保关键告警能够得到及时响应。这不仅有助于提升运维效率,还能改善团队的工作环境,减少因无效告警带来的疲劳感。原创 2024-09-07 21:10:42 · 831 阅读 · 0 评论 -
【颇具潜力】深入浅出:如何构建高性能,高并发,高可用的系统?
软件的发展历程可以说是一部不断应对和管理复杂性的历史。软件复杂性大致可以分为两大类:业务复杂性和技术复杂性。前者主要涉及业务建模和抽象设计,后者则侧重于实现高性能、高并发和高可用(通常简称“三高”)的系统。我将从后端研发的角度出发,分享多年在B端和C端系统建设方面的宝贵经验和实践,特别关注那些需要同时应对高性能、高并发和高可用性的系统设计和优化策略。原创 2024-09-05 07:30:00 · 962 阅读 · 0 评论 -
【初出江湖】分布式之什么是分布式存储?
分布式存储是一种将数据分散存储在多个节点上的存储方式。与传统的集中式存储相比,分布式存储将数据分布在多个节点上,每个节点都可以独立地存储和访问数据。这种分布式的存储方式可以提供更高的可靠性、可扩展性和性能。原创 2024-09-02 21:46:23 · 1509 阅读 · 0 评论 -
【初出江湖】SOA 与微服务:哪个最适合您的业务?
面向服务的体系架构所带来的服务概念已成为现代云计算和虚拟化的核心组成部分,比如中间件和微服务等项目。由于它们的相似性,人们经常将 SOA 和微服务架构相混淆。二者的主要区别是它们的范围:SOA 是一种企业级的架构方案,而微服务则是应用开发团队的一种实施策略。原创 2024-09-02 21:28:40 · 1587 阅读 · 0 评论 -
【初出江湖】大白话解释集中式、分布式、微服务的区别?
所谓集中式计算系统,是指所有计算都由位于同一位置的单台计算机来执行。集中式系统就是把所有的程序、功能都集中到一台主机上,从而往外提供服务的方式集中式和分布式系统的主要区别在于系统节点之间的通信模式。集中式系统的状态控制在中央节点内,客户端以定制方式访问此节点。集中式系统的各个节点都要访问此中央节点,因此可能会导致网络拥塞和速度缓慢。集中式系统存在单点故障,而分布式系统则没有单点故障。原创 2024-09-01 08:00:00 · 2793 阅读 · 0 评论 -
【初出江湖】剖析软件架构发展之路
分布式系统面向的是运维,更多的是考虑系统性能和部署环境之间的问题,通过分布式解决在没有大型主机的部署环境情况下,系统性能的高可用和吞吐量,是个一个很早就提出来的一个概念,是由集中式系统过渡来的,随着计算机系统向网络化和微型化的发展日趋明显,同时业务的发展,传统的集中式处理模式越来越不能适应人们的需求,学习成本高,大型主机贵、容错性差,扩容困难。SOA----面向服务架构,实际上强调的是软件的一种架构,一种支撑软件运行的相对稳定的结构,表面含义如此,其实SOA是一种通过服务整合来解决系统集成的一种思想。原创 2024-09-01 08:00:00 · 1502 阅读 · 0 评论 -
阿里面试官:讲一讲熔断与降级的区别?
降级是指在系统面临异常情况或高负载时,有意地减少某些非核心功能或服务的质量,以保证核心功能的可用性。熔断这一概念来源于电子工程中的断路器(Circuit Breaker)。在微服务架构中熔断是一种容错机制,当某个服务调用出现异常,如超时、多次失败等情况时,系统会自动切断对该服务的调用,以避免故障传播,确保系统的整体稳定性和可用性。这种牺牲局部,保全整体的措施就叫做熔断。原创 2024-03-10 22:50:12 · 1626 阅读 · 0 评论
分享