汉诺塔问题

    有A、B、C三根柱子,第一个有64个盘子,从上往下盘子越来越大。现要把64个盘子全部移到第3个柱子上,移到的时候始终只能小盘子压着大盘子,而且每次只能移到一个。

 

分析:

假设第一根只有3个盘,从上往下分别为 a、b、c,那么移动这3个盘到第三根柱子的流程如下:

  1. 把 a 从第一根柱子移动到第三根柱子,即 A -> C
  2. 把 b 从第一根柱子移动到第二根柱子,即 A -> B
  3. 把 a 从第三根柱子移动到第二根柱子,即 C -> B
  4. 把 c 从第一根柱子移动到第三根柱子,即 A -> C
  5. 把 a 从第二根柱子移动到第一根柱子,即 B -> A
  6. 把 b 从第二根柱子移动到第三根柱子,即 B -> C
  7. 把 a 从第一根柱子移动到第三根柱子,即 A -> C

总的来说,

  1. 把 A 柱上的 a、b 两个盘借助 C 柱移动到 B 柱
  2. 把 A 柱上的 c 盘移动到 C 柱
  3. 把 B 柱上的 a、b 两个盘借助 A 柱移动到 C 柱

因此我们推算出,把 n 个盘子从 A 柱移到 C 柱:

  1. 把 A 柱上的 (n-1)个盘借助 C 柱移动到 B 柱
  2. 把 A 柱上的第 n 个 盘移动到 C 柱
  3. 把 B 柱上的(n-1)个盘借助 A 柱移动到 C 柱

用递归算法实现如下:

function move(n, A, B, C) {
	if(n === 1) {

		// 只有一个盘时,直接从 A 柱上移动到 C 柱
		console.log(A + "--->" + C);

	} else {

		// 把(n-1)个盘从 A 柱上的借助 C 柱移动到 B 柱
		move(n-1, A, C, B);

		// 把第 n 个盘从 A 柱上移动到 C 柱
		console.log(A + "--->" + C);
		
		// 把(n-1)个盘从 B 柱上的借助 A 柱移动到 C 柱
		move(n-1, B, A, C);
		
	}
}

var n = 3;
move(n, "A", "B", "C");

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值