- 博客(6)
- 收藏
- 关注
原创 人工智能和机器学习在测试中的应用(二)
在数百万行代码中,AI系统通过分析发现,某一模块频繁地进行内存分配操作,但相应的释放操作却相对较少,且这些操作大多集中在几个关键函数中。微软引入AI辅助的缺陷预测系统,是软件工程领域内一个引人注目的创新实践,体现了人工智能在提升软件质量和开发效率方面的巨大潜力。基于AI的预测,测试团队可以针对性地设计测试用例,重点测试那些被标记为高风险的模块,提高测试效率和覆盖率。微软的这一实践展示了AI在软件质量保障中的强大作用,不仅提升了缺陷检测的前瞻性,还促进了更高效的开发流程。引入AI的Bug预测系统。
2024-06-22 15:47:40
376
1
原创 人工智能和机器学习在测试中的应用(一)
详细说明:自动化测试用例生成通常需要大量的训练数据,包括历史测试结果和代码库,以便模型学习如何生成有效的测试用例。- 详细说明:安全测试是保护软件免受攻击的关键步骤,AI可以帮助识别和预防安全漏洞。- 详细说明:学习和适应能力是AI系统的关键优势,可以不断提高测试的质量和效率。- 详细说明:性能测试需要模拟真实世界的使用情况,包括不同的用户负载和操作模式。- 详细说明:测试结果分析可以帮助识别测试覆盖不足的区域和频繁失败的测试用例。- 详细说明:个性化测试建议可以提高测试人员的效率和满意度。
2024-06-22 15:46:21
529
原创 LLM大模型测试维度
测试AI大模型是一个多维度和多步骤的过程,涉及多个方面,包括但不限于道德和伦理、偏见性、毒性、诚实性、安全评测等。7. 平台化评测:使用如PAI大模型评测平台等工具,支持不同基础模型、微调版本和量化版本的对比分析,以及自定义数据集的评测。4. 诚实性评测:检测AI生成内容的真实性和准确性,包括问答、对话和摘要任务的数据集,以及基于自然语言推理等评测方法。5. 安全评测:确保AI大模型在各种应用场景中的安全使用,包括鲁棒性评测和风险评测,例如越狱攻击方法的评估。
2024-06-22 15:34:39
1100
原创 机器学习中的特征工程
4. 特征选择:通过选择最相关或最具信息量的特征来减少特征空间的维度,可以使用统计方法(如方差选择),基于模型的方法(如递归特征消除),或基于特征重要性的方法(如随机森林的特征重要性)。8. 领域知识应用:根据任务的特定领域知识,手工构建适用于该领域的特征,比如针对图像处理的纹理、边缘特征,或文本处理中的词袋模型等。5. 特征组合:通过创建新的特征来捕获不同特征之间的关系,如多项式特征、交互特征、与时间相关的特征等。6. 时间序列特征:对于时间序列数据,可以提取时间相关的特征,如滞后特征、滑动窗口特征等。
2024-01-22 10:57:08
614
原创 如何解决大模型的「幻觉」问题?
大模型的「幻觉」问题是人工智能领域的一个重要问题。目前尚无完美解决方案,随着大模型的不断发展,大模型幻觉也将成为一个更加严重的问题。因此,研究人员需要采取措施来减少大模型幻觉的发生,保障大模型的安全可靠。大模型的幻觉往往是由于训练数据中存在错误或偏差导致的。大模型的幻觉也可能与模型设计有关。例如,如果模型的参数过多,则可能会导致模型过拟合,从而产生幻觉。即使无法完全消除幻觉,也可以通过开发检测幻觉的方法来降低幻觉的影响。总而言之,大模型技术具有巨大的潜力,将在未来的人工智能发展中发挥重要作用。
2024-01-12 10:57:46
1327
1
原创 生成式AI通过自动化、智能化和智能辅助等方式重塑开发流程和开发工具
生成式AI正在重塑开发流程和开发工具,通过自动化和优化软件开发过程,提高开发效率和质量。此外,生成式AI还可以帮助开发人员快速理解和解决复杂的技术问题,从而提高开发速度和效率。提示:生成式AI可以激发开发人员的创新和创造力,通过提供新的想法和解决方案来推动软件开发的发展。提示:生成式AI可以自动化许多开发流程,如代码生成、测试和部署,从而提高开发效率。它可以帮助开发人员更快地完成任务,减少错误和缺陷,提高开发质量。提示:生成式AI可以理解和解决复杂的技术问题,为开发人员提供快速准确的答案和解决方案。
2024-01-12 09:37:12
412
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人