
人工智能和机器学习在测试中的应用(二)
在数百万行代码中,AI系统通过分析发现,某一模块频繁地进行内存分配操作,但相应的释放操作却相对较少,且这些操作大多集中在几个关键函数中。微软引入AI辅助的缺陷预测系统,是软件工程领域内一个引人注目的创新实践,体现了人工智能在提升软件质量和开发效率方面的巨大潜力。基于AI的预测,测试团队可以针对性地设计测试用例,重点测试那些被标记为高风险的模块,提高测试效率和覆盖率。微软的这一实践展示了AI在软件质量保障中的强大作用,不仅提升了缺陷检测的前瞻性,还促进了更高效的开发流程。引入AI的Bug预测系统。






