郑哲东的博客

计算机视觉 行人再识别 person re-ID

阅读小结:Unsupervised Representation with Deep Convolutional Generative Adversarial Networks

What

CNN应用于无监督学习。将这种CNN称为DCGANs

1.提出和评估了DCGANs 有一些结构上的限制,让他可以stable的去训练。

2.利用图像分类任务训练的discriminator,证明了他们有无监督学习的潜力。(这是迁移学习?)

证明了他们的adversarial pair学习到了一个  hierarchy of representations  从物体的部分到整个场景 


以下G代表 generator D代表discriminator

How

1.model上使用了4个策略:

a.使用全卷积网络,代替pooling。可以让网络去学习upsampling/downsampling的方式(使用在G和D上)

b.作者发现average pooling增加了net的稳定性但减慢了收敛速度。在D中最后一层conv结果fc,然后使用了sigmoid。

c.用batchnormalization ,有助于pool initialisation和深的网络中传递梯度。防止G把所有rand input都掉到一个局部极值。(G的输出层不用,D的输入层不用,其他都用)

d.G中除了输出使用Tanh,其他都用 ReLu  ; D中都用Leaky ReLu


关于G的实验:

1.输入有窗的图片给G

然后去除响应值高的filter,发现G会用电视啊墙啊来替代窗。

2.可以对输入算一个平均

比如 生成男人的平均vector A 和生成女人的平均 vector B  还有生成 戴墨镜的女人的平均vector C    

观察到了 C-B+A = 生成了戴墨镜的男人    (这个很合理,也很屌啊)


我写邮件给luke二作,他给我回的邮件如下


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Layumi1993/article/details/52335585
个人分类: 论文阅读
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭