阅读小结:Stacked Hourglass Networks for Human Pose Estimation

arXiv: https://arxiv.org/pdf/1603.06937v2.pdf

github: https://github.com/anewell/pose-hg-train



What:

人体关键点预测,输入人体图像输出几个关键点。

使用了反复迭代bottom down/  top down 这个策略在人脸landmark 甚至更早像ASM就有,反复迭代来更精确。

但在CNN上具体是怎么操作的呢?(文题中的hourglass沙漏就是指结构像沙漏一样吧)


How:

1. 基本块

他们使用residual 作为基本网络结构


1*1 的卷积降维256->128 ,3*3 的卷积,1*1的卷积升维128->256


2. 单个沙漏网络的拓扑结构是对称的,结构类似fully convolutional network for semantic segmentation,(语义分割的那篇CVPR paper)

最终一共使用了8个沙漏网络。每个沙漏网络的输入都为 64*64.  (输入图片大小为256*256,一开始经过一次7*7 stride2 的conv 和一次 maxpooling  变成64)



3.如上图,在每次pooling之后都会有1个basic building block 加到之后 upsampling中相同大小的map中。

(这里可以看出每个pooling前的feature map都是256 channel的,up sampling的时候也是256 channel的)


4. 使用了中层监督,对前几个沙漏网络也有loss,这和训练深层res net/inception net一样。而loss的方法如下图


蓝色是prediction(这里有map的 regression Loss),有一路直传,一路从上一个沙漏网络来,三路加到一起传到下一个沙漏



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Layumi1993/article/details/52459385
个人分类: 论文阅读
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭