阅读A Discriminative Feature Learning Approach for Deep Face Recognition

标签: 机器学习 人脸识别
1481人阅读 评论(3) 收藏 举报
分类:

论文链接:http://101.96.10.64/ydwen.github.io/papers/WenECCV16.pdf

原作者代码链接

Caffe:https://github.com/kpzhang93/caffe-face

MxNet:https://github.com/pangyupo/mxnet_center_loss


What:

对于分类任务来说,最后预测的是一个联合概率。这个概率可以由卷积获得。

打个比方:[1,0,0,1],[0,1,1,0]我可以预测为同一类。只要用[1,0,1,0]的filter。那么对于这个filter的卷积结果都是1,没毛病。

同时,我们发现了一个问题。这两个虽然是同一类,但是特征完全不同。也就是说,如果我们拿CNN中间的特征出来,也可能发现这种乌龙事件。

虽然分类效果很好,但是中间层的特征并不是按我们预想的那样分布的。

为了解决这个问题,常见的方案是 contrastive loss 和 triplet loss。作者则提出了一个center loss和softmax loss 联合训练。


How:

1.为每一类设置一个中心点(这个中心点实际上就是每一类特征的聚类中心。)

2.除了在继续做分类问题外,对每一个中心点(多维空间下,这个点其实就是一个多维向量),把图像的特征和这个中心点,做L2 Loss

让所有该类的特征都尽可能的靠近中心靠近。


我在Matlab上重现了这个实验 (https://github.com/layumi/2016_Center_Loss)


重现分为了几个部分:

1. minist数据集上,将网络fc层设置为2维,train一个10分类的网络。在test集上将2维结果可视化。 (使用的网络为论文中的LeNet++)

2. 加入centerloss,再train。再可视化。

3. 应用到大数据集(i.e.人脸数据集)上。(这一步我还没测)



P.S.我想了一下。。如果cosine距离的话,用不用这个loss差异不大啊。只是个人感受。


查看评论

A Discriminative Feature Learning Approach for Deep Face Recognition 原理及在caffe实验复现

本文主要讲centerloss 的原理,及其创新点。然后用caffe 跑自己的数据(CASIA-WebFace | MsCelebV1-Faces-Aligned) Reference pap...
  • dongfang1984
  • dongfang1984
  • 2016-11-25 16:59:19
  • 9725

人脸识别 - A Discriminative Feature Learning Approach for Deep Face Recognition

A Discriminative Feature Learning Approach for Deep Face Recognition ECCV 2016code: https://github...
  • cv_family_z
  • cv_family_z
  • 2016-10-17 10:10:37
  • 5493

centerloss系列文章笔记——人脸识别:A Discriminative Feature Learning Approach forDeep Face Recognition

人脸识别:A Discriminative Feature Learning Approach forDeep Face RecognitionYandong Wen, Kaipeng Zhang, ...
  • dreamer_on_air
  • dreamer_on_air
  • 2017-08-27 18:24:20
  • 537

A Discriminative Feature Learning Approach for Deep Face Recognition

16年ECCV的文章《A Discriminative Feature Learning Approach for Deep Face Recognition》 code:https://github...
  • yang_502
  • yang_502
  • 2017-05-28 13:46:01
  • 1427

ECCV A Discriminative Feature Learning Approach for Deep Face Recognition

A Discriminative Feature Learning Approach for Deep Face Recognition 主要思想:   是一种metric learning的思想,本...
  • E01114255
  • E01114255
  • 2016-11-02 10:41:39
  • 1447

算法提高 A Careful Approach

问题描述  如果你认为参加一个编程比赛让你感到有压力,那么请你想象你是一个空中交通管制员。因为人命关天,所以一个空中交通管制员必须在时刻变化的环境中专注于任务,解决不可预知的事件。  让我们将目光转向...
  • qq_36424540
  • qq_36424540
  • 2018-03-10 13:08:11
  • 88

deep learning for face detection (caffe C++)

deep learning for face detection (caffe C++) Implement Yahoo Paper: Multi-view Face Detection Using ...
  • lyly2776
  • lyly2776
  • 2016-06-29 15:40:47
  • 734

A Discriminative Feature Learning Approach for Deep Face Recognition, ECCV16.

A Discriminative Feature Learning Approach for Deep Face Recognition, ECCV16. 论文:http://ydwen.github...
  • xuanyoumeng
  • xuanyoumeng
  • 2016-10-29 10:45:01
  • 2210

A Discriminative Feature Learning Approach for Deep Face Recognition 的源码部分分析

前一篇文章介绍了centerloss的训练过程,以及结果。本文分析一下CenterLoss的源码部分。同时这也是在caffe中添加新的一层的方法。(本文时特例添加loss层) 宏观感受 ...
  • dongfang1984
  • dongfang1984
  • 2017-02-15 20:42:00
  • 969

「Deep Learning」Note on ExFuse(enhancing feature fusion)

Sina Weibo:小锋子Shawn Tencent E-mail:403568338@qq.com http://blog.csdn.net/dgyuanshaofeng/article/...
  • dgyuanshaofeng
  • dgyuanshaofeng
  • 2018-04-15 09:17:52
  • 15
    个人资料
    持之以恒
    等级:
    访问量: 9万+
    积分: 1292
    排名: 3万+
    关于我