阅读小结:Fine-Grained Recognition with Automatic and Efficient Part Attention

标签: 细力度分类 CNN Part Attention
875人阅读 评论(2) 收藏 举报
分类:

这是一篇baidu research的paper。

主题为细力度分类。这个问题在于找到一些关键的细节。比如在鸟类数据集CUB上,专家往往也是通过鸟的尾巴,或者头部来对鸟类分类的。


What:

预测细力度分类的CNN+MDP的网络。

1. 融合了三个元素: 特征提取,attetion 和细力度分类一起训练。(比如有些之前paper是把attetion part额外切割出来的。如鸟的头部专门train个CNN。最后多个model fusion)

2. 使用了弱监督的增强学习(reinforcelearning),不需要额外的标注信息。(比如语义分割信息)

3. 全卷积网络提升了训练和测试速度。

4.贪心的奖励策略加速了收敛。


读前疑问:

1.最后怎么结合reinforce learning的?

其实attention的选择可以看成马尔科夫决策过程中的action(我选择哪个atttention去看)

最后的reward为分类结果的好坏。





How:

模型分为3个部分

1. Feature Map Extraction:

在训练时复用了feature map(后面叉出来的3路,用的所有map都是之前map上的crop,而非原始图上的crop)

而在测试时图像和所有的attention crop都会resize到一个指定尺寸。

2. Part Attention

这部分将原始输入,转为了single channel的图片,做了softmax 将activation都转为[0,1]之间的值。视为part的置信度。

在测试中模型选择有最高probability的区域(图中小白点)作为part location。而在训练过程中模型采样了多次。

3.细力度分类

每一个patch都有一个cnn负责。随后为softmax。

在测试中,最后prediction为softmax结果的average,再取最大。


4.训练过程中优化目标


函数2 前半段是最大化奖励R  后半段实际上就是原来的分类误差L最小。

R可以由   选这个attention概率乘对应的reward得到


看下面这张图比较清晰。



5.reward大小的策略

如果上一个判断对了,马上就reward 1。

如果这次对了,上次分类的objective比这次大(也就是上次判断得不好),也reward1.

否则是 0.



查看评论

Fine-Grained Recognition with Automatic and Efficient Part Attention

论文出处:2016年CVPR 作者单位:Baidu Research 细粒度分类的挑战在于较小的类间差异VS较大的类间差异。因此解决这个问题的关键在于定位判别性的位置并提取pose-invaria...
  • xiaoyushares
  • xiaoyushares
  • 2017-03-20 08:13:47
  • 139

细粒度图像分析

关键词:fine grained classification论文阅读(1)--Fine-grained Image Classification by Exploring Bipartite-Gra...
  • u014568921
  • u014568921
  • 2017-05-13 19:07:10
  • 540

SPDA-CNN:Unifying Semantic Part Detection and Abstraction for Fine-grained Recognition

SPDA-CNN:联合语义检测和提取用以细粒度识别 最近在做细粒度分类和研读CVPR2016结果,看到这篇文章。做个笔记,方便自己回顾和与大家讨论。 1.摘要及引言多数的卷积神经网络缺少能够mode...
  • u011587569
  • u011587569
  • 2016-07-29 22:13:55
  • 1001

细粒度图像识别文章 Picking Deep Filter Responses for Fine-grained Image Recognition 阅读笔记

细粒度图像识别指的是在一个大类中的数个子类进行识别(例如识别不同鸟类的种类),人们通常需要专业的知识才能达到很高的准确率,而普通的图像分类网络在细粒度图像识别方面也是表现欠佳。本博客讲解了一篇CVPR...
  • Cyiano
  • Cyiano
  • 2017-05-11 14:45:51
  • 1777

论文提要“Part-based R-CNNs for Fine-grained Category Detection”

物体的局部信息可以用来进行精细分类,这篇文章学习了整个物体和物体局部检测器,从pose-normalized表示预测精细分类。局部定位可以反应物体之间的关联,并能降低物体姿态或相机位置变化带来的影响。...
  • cv_family_z
  • cv_family_z
  • 2015-09-02 16:48:55
  • 1682

论文笔记:Two-level attention model for fine-grained Image classification

The Application of Two-level Attention Models in Deep Convolutional Neural Network for Fine-grained ...
  • baidu_17806763
  • baidu_17806763
  • 2017-04-17 15:59:09
  • 2550

Part-based R-CNNs阅读笔记

Part-based R-CNNs阅读笔记1. 预备知识细粒度分类细粒度图像分析任务相对通用图像(general/generic images)任务的区别和难点在于其图像所属类别的粒度更为精细(通用:...
  • xin1695114974
  • xin1695114974
  • 2017-11-27 01:15:40
  • 149

论文阅读(4)--Part-Stacked CNN for Fine-Grained Visual Categorization

这篇文章是来自悉尼科技大学Shaoli Huang等人的工作,与前两篇文章的出发点类似,本篇文章也是在Parts上寻找Fine-Grained的线索,但与前两篇文章相比,在框架中人工的参与更少。...
  • lc013
  • lc013
  • 2016-10-12 15:31:01
  • 1844

Part-based R-CNNs for Fine-grained Category Detection(精读)

一.文献名字和作者      Part-based R-CNNs for Fine-grained Category Detection, ECCV2014     二.阅读时间   ...
  • shengno1
  • shengno1
  • 2014-12-08 17:53:41
  • 2848

BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition

CVPR 2016 本文没有开源代码相关文档和代码 https://medusa.fit.vutbr.cz/traffic/research-topics/fine-grained-veh...
  • cv_family_z
  • cv_family_z
  • 2016-08-17 15:38:08
  • 1935
    个人资料
    持之以恒
    等级:
    访问量: 8万+
    积分: 1290
    排名: 3万+
    关于我