【行人重识别】A Discriminatively Learned CNN Embedding for Person Re-identification

标签: cnn 行人重识别 re-ID person re-identifica 行人识别
3474人阅读 评论(3) 收藏 举报
分类:

A Discriminatively Learned CNN Embedding for Person Re-identification

link: https://arxiv.org/abs/1611.05666

Author: Zhedong Zheng, Liang Zheng and Yi Yang

Code: https://github.com/layumi/2016_person_re-ID

Author email: zdzheng12@gmail.com 

Homepage: http://zdzheng.xyz

欢迎关注知乎专栏 行人重识别


这篇 行人重识别 paper主要ague的是  

1. verification label 为0,1二值。如果输入的两张图片为同一人,则为1,否则为0。

显然,这个label较弱,由于它没有利用上整的数据集的标注信息(每次只考虑了两个或三个样本之间label的关系,如contrastive loss 和 triplet loss)。

2. identity label为身份label。比如在Market1501数据集上,有751个identity,那么就是751个label。这个label较强,为数据集原始的标注信息。

如下图,可以直观的看到 对于身份认证模型(verification model)来说,虽然他显式的考虑了样本之间的相似度,但显然没有充分利用所有的label信息。

而对于身份分类模型(classification model),在一个batch中一起bp。其实潜在就融合了类内数据在高维空间相似和类间差异的要求。

于是提出的模型融合了这两种loss。


3. 网络模型如何

作者其实简单融合了原始的两种loss,并做了修改。在bp时,按权重将两种loss的梯度一同tune network。

篮框中的网络即为原来finetune的classification model,最后predict identity label。

其中Square Layer 即为 简单的欧式距离但element wise。所以得出的也是向量。再用这个向量去predict verification label。


4.classification和verification谁贡献更大?为什么融合以后好了?

作者还比较了单独使用两个模型的效果。来找到谁的效果更强。Paper中发现classification mode 略好一些。

至于融合以后,如下图,我们可以明显地看出两个网络各自学到了不同的attetion。当fusion之后,the proposed model显示出了一个attention的融合。




最后在market1501的无监督聚类效果图如下,可以看出学到了一些discriminative 特征





P.S. 虽然 Camera6为低清摄像头,但提出的embedding没有受到很大的影响。(相比于原始数据集中的Hist结果确实好很多了。。。)



查看评论

【Person Re-id】A Discriminatively Learned CNN Embedding for Person Re-identification

verification model:同时输入image pairs,network预测输入图片是否为同一个人,将问题当成一个二分类来看。这样导致没有完全用到标注信息,image pairs和数据集中...
  • booyoungxu
  • booyoungxu
  • 2017-11-10 15:25:28
  • 403

代码笔记:caffe-reid中generate_caffenet.py解析

代码地址如下。该代码是用caffe实现的《A Discriminatively Learned CNN Embedding for Person Re-identification》 其中genera...
  • u013698770
  • u013698770
  • 2017-03-03 16:20:54
  • 1418

1611.A Discriminatively Learned CNN Embedding for Person Re-identification论文阅读笔记

reid相关的问题: car recognition/fine-grained classification/objective retrieval/image retrieval/instance...
  • xuluohongshang
  • xuluohongshang
  • 2018-01-02 22:35:31
  • 218

Discriminatively Learned CNN Embedding for Person Re-identification

  • 2017年03月03日 10:31
  • 775KB
  • 下载

代码笔记:caffe-reid的数据预处理

代码地址如下。该代码是用caffe实现的《A Discriminatively Learned CNN Embedding for Person Re-identification》 https:/...
  • u013698770
  • u013698770
  • 2017-03-03 12:02:26
  • 1178

CVPR 2016-11-18

[1] arXiv:1611.05842 [pdf, other] Video Processing from Electro-optical Sensors for Object Detecti...
  • u011171235
  • u011171235
  • 2016-11-23 23:07:06
  • 1345

CNN FOR LICENSE PLATE MOTION DEBLURRING--阅读笔记

1、We focus on blurred images from a real-life traffic surveillance system, on which we, for the firs...
  • h_jlwg6688
  • h_jlwg6688
  • 2017-05-02 17:03:45
  • 490

Convolutional Pose Machines 阅读小结

Title: Convolutional Pose Machines Authors: Shih-En Wei, Varun Ramakrishna, Takeo Kanade, Yaser She...
  • Layumi1993
  • Layumi1993
  • 2016-07-07 22:20:40
  • 4565

行人再识别(行人重识别)【包含与行人检测的对比】

最近,在网上搜索关于“行人重识别”及“行人再识别”等关键词,发现几乎都是关于行人检测的内容。对于“行人重(再)识别”技术能找到的资料很少,这可能是因为“行人重(再)识别”技术最近才刚刚兴起吧。总之,除...
  • liuqinglong110
  • liuqinglong110
  • 2014-12-03 17:26:16
  • 15611

行人重识别必读论文

  • 2014年07月31日 10:50
  • 40.22MB
  • 下载
    个人资料
    持之以恒
    等级:
    访问量: 8万+
    积分: 1290
    排名: 3万+
    关于我