当前搜索:

可视化神经网络的一些方法

原文为http://cs231n.github.io/understanding-cnn/    可视化CNN学到的东西 有一些方法可以用来理解和可视化CNN, 作为对深度学习不可解释的论述的反击。 1. 可视化激活值和第一层卷积的权重 最直接的可视化方法就是展示在前向传播...
阅读(887) 评论(0)

阅读小结:The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition

The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition paper link: http://cn.arxiv.org/pdf/1511.06789.pdf What: 同上一篇一样,这也是一篇关于细...
阅读(785) 评论(0)

阅读小结:Fine-Grained Recognition with Automatic and Efficient Part Attention

这是一篇baidu research的paper。 主题为细力度分类。这个问题在于找到一些关键的细节。比如在鸟类数据集CUB上,专家往往也是通过鸟的尾巴,或者头部来对鸟类分类的。 What: 预测细力度分类的CNN+MDP的网络。 1. 融合了三个元素: 特征提取,attetion 和细力度分...
阅读(874) 评论(2)

【行人重识别】A Discriminatively Learned CNN Embedding for Person Re-identification

A Discriminatively Learned CNN Embedding for Person Re-identification 这篇paper主要提出的是一种 行人重识别 的方法。 1. verification label 为0,1二值。如果输入的两张图片为同一人,则为1,否则为0。...
阅读(3472) 评论(3)
    个人资料
    持之以恒
    等级:
    访问量: 8万+
    积分: 1289
    排名: 3万+
    关于我