插入排序的工作方式非常像人们排序一手扑克牌一样,开始时,我们的左手为空并且桌子上的牌面朝下。然后我们每次从桌子上拿走一张牌,并将它插入左手的正确位置。为了找到一张牌的正确位置,我们从右到左将它与已在手中的每张牌进行比较。

将数组 {12,11,10,9,8,7,6},正序
原理
1.把所有的元素分为两组,已经排序的和未排序的
2.找到未排序的组中的一个元素,向已经排序的组中进行插入
3.倒叙遍历已经排序的元素,一次和带插入的元素进行比较,直到找到一个元素小于等于待插入元素,那么就把待插入元素放到这个位置没其他的元素向后移动一位

public class Insertion {
public static void main(String[] args) {
Integer arr[] = {12,11,10,9,8,7,6};
sort(arr);
System.out.println(Arrays.toString(arr));
sort(arr, Comparator.reverseOrder());
System.out.println(Arrays.toString(arr));
}
/**
* 自定义排序
*
* @param arr
* @param comparator
* @param <T>
*/
public static <T> void sort(T[] arr, Comparator<T> comparator) {
for (int i = 0; i <= arr.length - 1; i++) {
for (int j = i; j > 0; j--) {
if (greater(comparator, arr[j - 1], arr[j])) {
exch(arr, j, j - 1);
} else {
break;
}
}
}
}
/**
* 正序
*
* @param arr
* @param <T>
*/
public static <T> void sort(Comparable<T>[] arr) {
//有多少个元素参与选择 i开始索引 arr.length - 1 所有元素都参与
for (int i = 0; i <= arr.length - 1; i++) {
//倒序遍历0至i处的索引, j被比较元素的开始值 ,arr.length - 1倒数第一个元素需要被比较,没有等于是因为下面的j-1
for (int j = i; j > 0; j--) {
if (greater(arr[j - 1], arr[j])) {
exch(arr, j, j - 1);
} else {
break;
}
}
}
}
/**
* 比较大小,如果c1比c2大,返回true,否则false,正序
*
* @param c1
* @param c2
* @return
*/
private static boolean greater(Comparable c1, Comparable c2) {
return c1.compareTo(c2) > 0 ? Boolean.TRUE : Boolean.FALSE;
}
private static <T> boolean greater(Comparator comparator, T c1, T c2) {
return comparator.compare(c1, c2) > 0 ? Boolean.TRUE : Boolean.FALSE;
}
/**
* 将arr数组中i角标和j角标位置互换
*
* @param arr 数组
* @param i 角标
* @param j 角标
* @param <T>
*/
private static <T> void exch(T[] arr, int i, int j) {
T temp;
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
时间复杂度分析
插入排序使用了双层for,其中内存循环的循环体是真正完成排序的代码,所以我们分析插入排序的时间复杂度,主要分析一下内层循环的执行次数即可
在最坏的情况下,也就是相邻连个元素每次都需要交换
元素的比较次数为
(n-1)+(n-2)+(n-3)+…+3+2+1=n^2/2-n/2
公式推导
设pn=(n-1)+(n-2)+(n-3)+…+3+2+1
设sn=1+2+3+…+(n-3)+(n-2)+(n-1)
pn+sn=(n-1+1)+(n-2+2)+(n-3+3)+…+(3+n-3)+(2+n-2)+(1+n-1)
因为一共有n-1个数,所以
pn+sn=n(n-1)
因为pn=sn,所以
pn=(n(n-1))/2
元素的交换次数为
(n-1)+(n-2)+(n-3)+…+3+2+1=n^2/2-n/2
总执行次数为
2(n^2/2-n/2)=n^2-n
根据大O推导法则,去掉最高项的常数因子,去掉常数项,所以时间复杂度为O(n^2)

被折叠的 条评论
为什么被折叠?



