统计学习方法(二)

感知机 感知机是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。 感知机预测是用学习得到的感知机模型对新的输入实例进行分类,是神经网络与支持向量机的基础。 感知机模型假设输入空间(特征空间)是 X⊆Rn\boldsymbol X \subseteq R...

2017-12-17 12:22:19

阅读数:80

评论数:0

统计学习方法(-)

结构风险(Structural risk minimization,SRM)是为了防止过拟合而提出来的策略,结构风险最小化等价于正则化(regularization)。在经验风险上加上表示模型复杂度的正则化项(regularizer)或罚项(penalty term)。在假设空间、损失函数以及训练...

2017-12-16 23:50:46

阅读数:119

评论数:0

(二)模型评估与选择

错误率:m个样本中有a个分类错误,则错误率E=a/m; 精度1-a/m; 误差实际预测输出与样本真实输出之间的差异称为误差,学习器在训练集上的误差称为‘训练误差’或者‘经验误差’,在新样本上的误差称为‘泛化误差’(generalization error)。 显然我们希望得到泛化误差小的机器。 过...

2017-12-12 21:24:39

阅读数:237

评论数:0

统计学习

基本概念输入空间与输出空间:在监督学习中,将输入输出所有可能取值的集合分表称为输入空间与输出空间;每一个具体的输入是一个实例,通常有特征向量来表示。这时候所有特征向量存在的空间称为特征空间。特征空间的每一维对应于一个特征。监督学习从训练数据(training data)集合中学习模型,对测试数据(...

2017-10-21 15:49:41

阅读数:102

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭