联合 union

联合(union)在C/C++里面见得并不多,但是在一些对内存要求特别严格的地方,联合又是频繁出现,那么究竟什么是联合、怎么去用、有什么需要注意的地方呢?就这些问题,我试着做一些简单的回答,里面肯定还有不当的地方,欢迎指出!


1、什么是联合?
“联合”是一种特殊的类,也是一种构造类型的数据结构。在一个“联合”内可以定义多种不同的数据类型, 一个被说明为该“联合”类型的变量中,允许装入该“联合”所定义的任何一种数据,这些数据共享同一段内存,已达到节省空间的目的(还有一个节省空间的类型:位域)。 这是一个非常特殊的地方,也是联合的特征。另外,同struct一样,联合默认访问权限也是公有的,并且,也具有成员函数。


2、联合与结构的区别?

“联合”与“结构”有一些相似之处。但两者有本质上的不同。在结构中各成员有各自的内存空间, 一个结构变量的总长度是各成员长度之和(空结构除外,同时不考虑边界调整)。而在“联合”中,各成员共享一段内存空间, 一个联合变量的长度等于各成员中最长的长度。应该说明的是, 这里所谓的共享不是指把多个成员同时装入一个联合变量内, 而是指该联合变量可被赋予任一成员值,但每次只能赋一种值, 赋入新值则冲去旧值。
下面举一个例了来加对深联合的理解。


例4: 
#include <stdio.h>
void main()
{
union number
{ /*定义一个联合*/
int i;
struct
{ /*在联合中定义一个结构*/
char first;
char second;
}half;
}num;
num.i=0x4241; /*联合成员赋值*/
printf("%c%c/n", num.half.first, num.half.second);
num.half.first='a'; /*联合中结构成员赋值*/
num.half.second='b';
printf("%x/n", num.i);
getchar();
}
输出结果为: 
AB 
6261

从上例结果可以看出: 当给i赋值后, 其低八位也就是first和second的值; 当给first和second赋字符后, 这两个字符的ASCII码也将作为i 的低八位和高八位。

首先明白联合中成员是共享内存的,i,first,second是在同一快内存地址中,大小为4字节,对i赋值0x4241,因为在win环境下是小端存储,即从低字节地址开始存41,42,41和42又分别是A和B的ASCII码。同理,61和62分别是a和b的ASCII码


7、几点需要讨论的地方:
1、联合里面那些东西不能存放?
我们知道,联合里面的东西共享内存,所以静态、引用都不能用,因为他们不可能共享内存。


2、类可以放入联合吗?


我们先看一个例子:
class Test
{
public:
Test():data(0) { }
private:
int data;
};
typedef union _test
{
Test test; 
}UI; 
编译通不过,为什么呢?
因为联合里不允许存放带有构造函数、析够函数、复制拷贝操作符等的类,因为他们共享内存,编译器无法保证这些对象不被破坏,也无法保证离开时调用析够函数。


AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值