TCP 粘包

TCP是面向流的, 流, 要说明就像河水一样, 只要有水, 就会一直流向低处, 不会间断. TCP为了提高传输效率, 发送数据的时候, 并不是直接发送数据到网路, 而是先暂存到系统缓冲, 超过时间或者缓冲满了, 才把缓冲区的内容发送出去, 这样, 就可以有效提高发送效率. 所以会造成所谓的粘包, 即前一份Send的数据跟后一份Send的数据可能会暂存到缓冲当中, 然后一起发送.


UDP就不同了, 面向报文形式, 系统是不会缓冲的, 也不会做优化的, Send的时候, 就会直接Send到网络上, 对方收不收到也不管, 所以这块数据总是能够能一包一包的形式接收到, 而不会出现前一个包跟后一个包都写到缓冲然后一起Send.


但其实别想得太复杂的, TCP所谓的粘包处理, UDP所谓的丢包处理, 其实都是很简单的.

TCP只要保证自己写入的流是按 长度 + 内容 + 长度 + 内容 

粘包产生原因:
先说TCP:由于TCP协议本身的机制(面向连接的可靠地协议-三次握手机制)客户端与服务器会维持一个连接(Channel),数据在连接不断开的情况下,可以持续不断地将多个数据包发往服务器,但是如果发送的网络数据包太小,那么他本身会启用Nagle算法(可配置是否启用)对较小的数据包进行合并(基于此,TCP的网络延迟要UDP的高些)然后再发送(超时或者包大小足够)。那么这样的话,服务器在接收到消息(数据流)的时候就无法区分哪些数据包是客户端自己分开发送的,这样产生了粘包;服务器在接收到数据库后,放到缓冲区中,如果消息没有被及时从缓存区取走,下次在取数据的时候可能就会出现一次取出多个数据包的情况,造成粘包现象(确切来讲,对于基于TCP协议的应用,不应用包来描述,而应 用 流来描述),个人认为服务器接收端产生的粘包应该与linux内核处理socket的方式 select轮询机制的线





不同的协议层对数据包有不同的称谓,在传输层叫做段(segment),在网络层叫做数据报(datagram),在链路层叫做帧(frame)。数据封装成帧后发到传输介质上,到达目的主机后每层协议再剥掉相应的首部,最后将应用层数据交给应用程序处理。


在应用程序中我们用到的Data的长度最大是多少,直接取决于底层的限制。   
我们从下到上分析一下:   
1.在链路层,由以太网的物理特性决定了数据帧的长度为(46+18)-(1500+18),其中的18是数据帧的头和尾,也就是说数据帧的内容最大为1500(不包括帧头和帧尾),即MTU(Maximum Transmission Unit)为1500;  
2.在网络层,因为IP包的首部要占用20字节,所以这的MTU为1500-20=1480; 
3.在传输层,对于UDP包的首部要占用8字节,所以这的MTU为1480-8=1472;

当我们发送的UDP数据大于1472的时候会怎样呢?    
这也就是说IP数据报大于1500字节,大于MTU.这个时候发送方IP层就需要分片(fragmentation).    
把数据报分成若干片,使每一片都小于MTU.而接收方IP层则需要进行数据报的重组.    
这样就会多做许多事情,而更严重的是,由于UDP的特性,当某一片数据传送中丢失时,接收方便    
无法重组数据报.将导致丢弃整个UDP数据报。    
   
因此,在普通的局域网环境下,我建议将UDP的数据控制在1472字节以下为好.    
   
进行Internet编程时则不同,因为Internet上的路由器可能会将MTU设为不同的值.    
如果我们假定MTU为1500来发送数据的,而途经的某个网络的MTU值小于1500字节,那么系统将会使用一系列的机    
制来调整MTU值,使数据报能够顺利到达目的地,这样就会做许多不必要的操作.    
   
鉴于Internet上的标准MTU值为576字节,所以我建议在进行Internet的UDP编程时.    
最好将UDP的数据长度控件在548字节(576-8-20)以内.

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值