乐优商城介绍 1.乐优商城介绍1.1.项目介绍乐优商城是一个全品类的电商购物网站(B2C)。用户可以在线购买商品、加入购物车、下单、秒杀商品可以品论已购买商品管理员可以在后台管理商品的上下架、促销活动管理员可以监控商品销售状况客服可以在后台处理退款操作希望未来3到5年可以支持千万用户的使用1.2.系统架构1.2.1.架构图乐优商城架构缩略图,大图请参考课前资料:DevOpsngi...
ubuntu14.04 忘记了普通用户密码和root密码 步骤一:必须先找回ROOT,才可以往下做。本文使用的Ubuntu版本为14.04.4,具体过程如下为:1、重启电脑长按shift键直到进入下图进入GRUB引导模式,选择第二行Ubuntu 高级选项, 选中直接回车 ,如下图:2、进入如下画面,看到里面有一些选项,这时千万不要按回车键,按e进入(recovery mode) 编译kernel进行启动参数3、关键的时候到了, 倒...
如何分清分布式、高并发与多线程 当提起这三个词的时候,是不是很多人都认为分布式=高并发=多线程?当面试官问到高并发系统可以采用哪些手段来解决,或者被问到分布式系统如何解决一致性的问题,是不是一脸懵逼?确实,在一开始接触的时候,不少人都会将三者混淆,误以为所谓的分布式高并发的系统就是能同时供海量用户访问,而采用多线程手段不就是可以提供系统的并发能力吗?实际上,他们三个总是相伴而生,但侧重点又有不同。什...
向量 向量有一维的吗?有一维向量。 大家都知道每个实数a都对应了实数轴上的一个点A, 实际上每个实数a都对应了实数轴上的一个向量OA, |a|=向量OA的模。 正数a对应的向量方向就是正实轴, 负数a对应的向量方向就是负实轴。 如果正实轴的单位向量记为i,那么实数a对应的向量就是ai。向量的几何意义是什么?先说1维,数轴上点A表示的数a,从原点起到点A为止的有向线段就可以用1维向量...
0 范数、1 范数、2 范数有什么区别? 是问向量范数还是矩阵范数?要更好的理解范数,就要从函数、几何与矩阵的角度去理解,我尽量讲的通俗一些。我们都知道,函数与几何图形往往是有对应的关系,这个很好想象,特别是在三维以下的空间内,函数是几何图像的数学概括,而几何图像是函数的高度形象化,比如一个函数对应几何空间上若干点组成的图形。但当函数与几何超出三维空间时,就难以获得较好的想象,于是就有了映射的概念,映射表达的就是一个集合通过某...
判断字符串是否为空 #判断字符串是否为''、space、tab、enter、null,有两种方法:1.if not data or data.isspace():2.if not data.strip() or data.strip()=='':
Tensorflow:AlexNet的实现(CIFAR-10数据集) 一、模型模型向前向后传播时间的计算请参考:Tensorflow深度学习之十:Tensorflow实现经典卷积神经网络AlexNet二、工程结构由于我自己训练的机器内存显存不足,不能一次性读取10000张图片,因此,在这之前我按照图片的类别,将每一张图片都提取了出来,保存成了jpg格式。与此同时,在保存图片的过程中,存储了一个python的dict结构,键为每一张图片的相对地...
卷积神经网络之经典网络LeNet-5、AlexNet、VGG-16、ResNet 一 实例探索卷积神经网络的基本构建,比如卷积层、池化层以及全连接层这些组件。事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络。最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法。实际上在计算机视觉任务中表现良好的神经网络框架往往也适用于其它任务,也许你的任务也不例外。也就是...
用Tensorflow实现经典CNN网络AlexNet 什么是AlexNet? AlexNet在ILSVRC-2012的比赛中获得top5错误率15.3%的突破(第二名为26.2%),其原理来源于2012年Alex的论文《ImageNet Classification with Deep Convolutional Neural Networks》,这篇论文是深度学习火爆发展的一个里程碑和分水岭,加上硬件技术的发展,深度学习还会继续火下去。...
卷积神经网络之AlexNet网络详解 一 介绍Alex Krizhevsky等人训练了一个大型的卷积神经网络用来把ImageNet LSVRC-2010比赛中120万张高分辨率的图像分为1000个不同的类别。在测试卷上,获得很高准确率(top-1 and top-5 error rates of 37.5%and 17.0% ).。通过改进该网络,在2012年ImageNet LSVRC比赛中夺取了冠军,且准确率远超第二名(to...
lenet-5,Alexnet详解以及tensorflow代码实现 Lenet-5是Yann LeCun提出的,对MNIST数据集的分识别准确度可达99.2%。下面简要介绍下每层的结构:第一层:卷积层该层的输入是原始图像的像素值,以MNIST数据集为例,则是28x28x1,第一层过滤器尺寸为5x5,深度设置为6,不适用0去填充,因此该层的输出尺寸是28-5+1=24,深度也为6.第二层:池化层接受第一层的输出作为输入,过滤器大小选为2x2,步长...
TensorFlow 入门之基本使用 整体介绍使用 TensorFlow, 你必须明白 TensorFlow:使用图 (graph) 来表示计算任务. 在被称之为 会话 (Session) 的上下文 (context) 中执行图. 使用 tensor 表示数据. 通过 变量 (Variable) 维护状态. 使用 feed 和 fetch 可以为任意的操作(arbitrary operation)赋值或者从其中获取数据...
TENSORFLOW:GRAPH 和 SESSION续 用tf.Session.run去运行opertionstf.Session.run方法是tensorflow里去执行一个opertion或者对tensor求值的主要方式。你可以把一个或者多个opertaion或者tensor传递给session.run去执行。TensorFlow会执行这些operation和所有这个operation依赖的计算去得到结果。session.run需要你指定一...
Tensorflow Get Started 关于Tensorflow的基本介绍Tensorflow是一个基于图的计算系统,其主要应用于机器学习。从Tensorflow名字的字面意思可以拆分成两部分来理解:Tensor+flow。Tensor:中文名可以称为“张量”,其本质就是任意维度的数组。一个向量就是一个1维的Tensor,一个矩阵就是2维的Tensor。 Flow:指的就是图计算中的数据流。当我们想要使用Tensorfl...
tensorflow: tensor,operation和Session 一、基本知识TensorFlow的基本知识是学习的基础,要有一个大致的了解。这个学习的时候遇到很多问题,所以准备一边学习一边整理。这些内容主要来自TensorFlow的中文社区,再加上自己的一些整理。首先要了解TensorFlow的基本概念。tensor可以理解为一种数据,TensorFlow就相当于一个数据的流动过程,所有能用图(graph)来表示的计算任务理论上都能用TensorFlo...
Tensorflow: About Session, Graph, Operation and Tensor Tensorflow是基于图(Graph)的计算系统。而图的节点则是由操作(Operation)来构成的,而图的各个节点之间则是由张量(Tensor)作为边来连接在一起的。所以Tensorflow的计算过程就是一个Tensor流图。Tensorflow的图则是必须在一个Session中来计算。这篇笔记来大致介绍一下Session、Graph、Operation和Tensor。Session...
tensorflow tensorboard可视化并保存训练结果 一、还是以mnist的例程,来演示tensorboard的可视化1、先上代码:from tensorflow.examples.tutorials.mnist import input_dataimport tensorflow as tfdir = './MNIST_data' # 最好填绝对路径# 1.Import data mnist = input_data.re...
如何为GradientDescentOptimizer设置自适应学习率? 我正使用TensorFlow来训练一个神经网络。我初始化GradientDescentOptimizer的方式如下:init = tf.initialize_all_variables()sess = tf.Session()sess.run(init)mse = tf.reduce_mean(tf.square(out - out_))train_step = tf...
在TensorFlow中怎么打印Tensor对象的值 在TensorFlow中,如何打印Tensor对象的值?对于下面这个TensorFlow矩阵乘法的例子:matrix1 = tf.constant([[3., 3.]])matrix2 = tf.constant([[2.],[2.]])product = tf.matmul(matrix1, matrix2)当我打印product时,显示为一个TensorObject。&l...