4.深层神经网络

4.1深层神经网络

n[0]=nx=3 第0层 括号里代表层数。

n[1]=5....

n[4]=n[L]=1

a[L]代表第L层的激活函数

同理还有z[L],b[L],a[L]

最后总结下符号约定:
输入的特征记作𝑥,但是𝑥同样也是 0 层的激活函数,所以𝑥 = 𝑎 [0]。
最后一层的激活函数,所以𝑎 [𝐿]
是等于这个神经网络所预测的输出结果。

4.2深层神经网络的前向传播

前向传播总结的公式如下:  实际上还是一层一层利用相同的计算逻辑来循环。

4.3正确的矩阵维度 重要!!

检查矩阵维度是深度学习里非常重要的一点。

训练集大小=1 注意矩阵都是小写

z[1]= w[1].x + b[1]

我们先不讨论b

首先根据网络可以确定 Z[1]的维度是(3,1) (3维矢量) 也就是(n[1],1)维矩阵

x 是(2,1)二维矩阵,因为有两个输入x1,x2 也就是(n[0],1)维矩阵

w[1]*x 得到Z[1] 根据矩阵乘法可知,W[1]的维度是(3,2) 也就是(n[1],n[0])维矩阵 

所以w[L]的维度是(n[L],n[L-1])   

自己在看一下n[2]这一层。

接下来看矢量b

b矩阵的维度要和z矩阵维度相等。比如第一层n=1 b1矩阵就需要是(3,1),第二层n=2 b2矩阵需要是(5,1)

所以b[L]维度是(n(L),1)

训练集大小=m,注意这里矩阵都换成大写

上述情况的意思是训练集大小为1(对应红圈里的列向量),但是实际上训练集大小不是固定的,所以Z的列数就不固定,如果训练集大小为m,那么Z[1]维度就是(n1,m)

所以X的维度也变了 变成了(n[0],m)

W1维度不变。

B1维度不变,因为python会把他广播成(n1,m)

所以Z[L],A[L]的维度为(n(L),m)

dZ[L],dA[L]维度和Z[L],A[L]保持一致,都是(n(L),m)

4.5 为深度神经网络构建模块

正向传播:通过a[L-1]得到a[L],注意可以先缓存z[L],对后续的正向传播反向传播非常有用。

反向传播: 为了梯度下降学习,要知道下降的斜率dW和db

L层的正向传播和反向传播示意图:

多层正向传播示意图:

多层反向传播示意图:

细节:缓存z W b

4.6正向传播和反向传播

正向传播:

反向传播:

一个例子:

4.7 参数和超参数

什么是超参数:

比如算法中的 learning rate 𝑎 (学习率)、 iterations ( 梯度下降法循环的数量 ) 𝐿 (隐藏
层数目)、 𝑛 [𝑙](隐藏层单元数目)、choice of activation function (激活函数的选择)都需要
你来设置,这些数字实际上控制了最后的参数 𝑊 𝑏 的值,所以它们被称作超参数。
超参数如何取值:
就是一个不断实验的过程,
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值