【数据存储】浮点型在内存中的存储

       

目录

一、存储现象

二、IEEE标准规范

         1.存储

         2.读取

三、举例验证

        1.存储

        2.读取


浮点型存储的标准是IEEE(电气电子工程师学会)754制定的。

一、存储现象

        浮点数由于其有小数点的特殊性,有很多浮点数是不能精确存储的,如:3.14,5.3,等等都不能在内存中以3.14或者5.3的形式存储。

二、IEEE标准规范

        

         1.存储

        如上图所示,32位单精度浮点数存储的标准是1位符号位+8位指数位+23位有效数字位。

        其中,符号位S与正负数标准相同,0就代表是正浮点数,1就代表是负浮点数。

        接下来是指数位E,它的计算与十进制的科学计数法相同,二进制序列想表示成1.xxx的小数点向左移动了几位,就是几,在存储的过程中需要加上127/2047(为了能表示出负的指数位)。

        最后留给有效数字M的位有23位,这23位中放的都是1.xxx中xxx的内容,因为每个浮点数都表示为了1.xxx,所以将“1.”省略,这样可以提高1位的精度。

         2.读取

        读取与存储是互逆的过程。

        第一位符号位S照常读取。

        后8位是指数位M,要分三种情况进行读取:

        1)8位中有0有1,这是正常的情况,如果是float,那就将这个二进制序列减去127就得到真实的M。

        2)8位全为0,说明存的时候指数位是-127或者-2047,为了拟合这个很小的数字,在读取时指数位规定为1-127 = 126,有效数字不再加“1.”,直接加“0.”。

        3)8位全为1,说明存的时候指数位是0。

        最后23位是有效数字E,按照二进制规则进行读取。

三、举例验证

        以3.14为例。

        1.存储

        2.读取

浮点型数据内存存储方式是按照IEEE 754标准进行存储的。IEEE 754标准规定了两种浮点数的表示方法:单精度浮点数和双精度浮点数。其,单精度浮点数占用4个字节,双精度浮点数占用8个字节。 在IEEE 754标准,浮点数的存储格式由三部分组成:符号位、指数位和尾数位。其,符号位用来表示浮点数的正负,指数位用来表示浮点数的数量级,尾数位用来表示浮点数的精度。 具体来说,单精度浮点数的存储格式如下所示: | 31 | 30 - 23 | 22 - 0 | |----|---------|--------| | S | E | M | 其,S表示符号位,占用1个bit;E表示指数位,占用8个bit;M表示尾数位,占用23个bit。双精度浮点数的存储格式类似,只是指数位和尾数位的长度不同。 在计算机,浮点数的存储方式是按照二进制补码进行存储的。具体来说,符号位用0表示正数,用1表示负数;指数位和尾数位都用二进制补码表示。 举个例子,如果要将3.14这个单精度浮点数存储到计算机,首先需要将3.14转换成二进制数。具体来说,可以使用以下方法进行转换: 3.14 = 11.0010001111...(二进制) 然后,根据IEEE 754标准的规定,将上述二进制数按照符号位、指数位和尾数位的顺序存储到计算机。具体来说,可以将上述二进制数转换成以下形式: | 0 | 10000000 | 10001100100011110101110 | |---|----------|------------------------| | S | E | M | 其,符号位S为0,表示正数;指数位E为10000000,表示指数为128(因为E需要加上一个固定的偏移量127,才能表示实际的指数值);尾数位M为10001100100011110101110,表示尾数为1.5707964(因为M需要除以2的23次方,才能表示实际的尾数值)。 因此,3.14这个单精度浮点数在计算机存储方式为: 01000000000100110010001111010111
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值