0024DivGame

这是一篇关于Div Game的解题报告,详细介绍了如何通过质因数分解来解决该问题。首先理解题目要求质因数z满足特定条件,然后分析算法思路,即通过质因数分解确定操作次数。给出了利用递归求解质因数的代码实现,并分析了时间复杂度为O(n^2),空间复杂度为O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Div Game

编号:0024

试题来源:AtCoder

题目描述

给定一个正整数 N N N,思考对 N N N进行下面重复的操作

  • 首先,选定一个正整数 z z z满足下面所有的要求:
    • z z z能够被表示为 z = p e z=p^e z=pe,这里面的 p p p是质数, e e e是正整数
    • N % z = = 0 N\%z ==0 N%z==0
    • z z z和先前选择的整数不同
  • 然后继续对 N / z N/z N/z进行上述操作

找到这个操作能够进行的最大次数

条件

  • 所有的输入都是整数
  • 1 ≤ N ≤ 1 0 12 1\leq N\leq 10^{12} 1N1012

输入

N

解答算法

算法思路

题目中要求 z = p e z = p^e z=pe,而且

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值