Div Game
编号:0024
试题来源:AtCoder
题目描述
给定一个正整数 N N N,思考对 N N N进行下面重复的操作
- 首先,选定一个正整数 z z z满足下面所有的要求:
- z z z能够被表示为 z = p e z=p^e z=pe,这里面的 p p p是质数, e e e是正整数
- N % z = = 0 N\%z ==0 N%z==0
- z z z和先前选择的整数不同
- 然后继续对 N / z N/z N/z进行上述操作
找到这个操作能够进行的最大次数
条件
- 所有的输入都是整数
- 1 ≤ N ≤ 1 0 12 1\leq N\leq 10^{12} 1≤N≤1012
输入
N
解答算法
算法思路
题目中要求 z = p e z = p^e z=pe,而且

这是一篇关于Div Game的解题报告,详细介绍了如何通过质因数分解来解决该问题。首先理解题目要求质因数z满足特定条件,然后分析算法思路,即通过质因数分解确定操作次数。给出了利用递归求解质因数的代码实现,并分析了时间复杂度为O(n^2),空间复杂度为O(n)。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



