树节点的第k个祖先
编号:0031
试题来源:leetcode
my blog:Something
试题描述
给定一棵树,树上有n个节点,按照从0到n-1进行编号。树以父节点数组的形式给出,其中parent[i]是节点i的父节点。树的根节点是编号为0的节点。其中parent[0]=-1表示其没有父节点。
请设计并实现getKthAncestor(int node, int k)函数,返回值为节点node的第k个祖先节点。若不存在,则返回-1。
树节点的第k个祖先节点是从该节点到根节点路径上的第k个节点。
限制:
- 1 ≤ k ≤ n ≤ 5 ∗ 1 0 4 1\leq k\leq n\leq 5*10^4 1≤k≤n≤5∗104
- parent[0]==-1表示编号为0的节点是根节点
- 对于所有的 0 < i < n 0<i<n 0<i<n, 0 ≤ p a r e n t [ i ] < n 0\leq parent[i] <n 0≤parent[i]<n总成立
- 0 ≤ n o d e < n 0\leq node<n 0≤node<n
- 至多查询 5 ∗ 1 0 4 5*10^4 5∗104次
解答算法
暴力法
算法思路
很显然,最简单的方法就是进行递归调用getKthAncestor函数,我们要查找node的第k个父节点,也就是找node的父节点的第k-1个父节点,也就是调用getKthAncestor(parent[node],k-1)。
递归调用的终止条件要么是k==0,说明当前节点就是返回值,要么是parent[node]==-1,说明查询不到满足条件的,返回-1。
代码实现
class TreeAncestor {
private:
int size;
vector<int> parent;
public:
TreeAncestor(int n, vector<int>& parent) {
size = n;
this->parent = parent;
}
int getKthAncestor(int node, int k) { //递归调用
if(k == 0)
{
return node;
}
if(node == 0)
{
return -1;
}
return getKthAncestor(parent[node], k - 1);
}
};
复杂度分析
- 时间复杂度:最坏情况下,要遍历整个深度,因此时间复杂度为 O ( n ) O(n) O(n)
- 空间复杂度:递归调用要使用栈空间,栈空间占用也为 O ( n ) O(n) O(n)
二分查找
算法思路
利用动态规划的思路,建立一个辅助的二维数组dp,其中dp[0][i]存放的是节点i的第
2
0
2^0
20个父节点,也即parent[i]。
显然dp[i][j]的定义为节点j的第
2
i
2^i
2i个父节点,因此显然递推公式有
d
p
[
i
]
[
j
]
=
d
p
[
i
−
1
]
[
d
p
[
i
−
1
]
[
j
]
]
dp[i][j] = dp[i-1][dp[i-1][j]]
dp[i][j]=dp[i−1][dp[i−1][j]]
然后就可以利用这个对我们要查找的第k个祖先节点进行拆分,将其划分成二进制数,然后依次进行寻找,例如我们要找寻第3个父节点,也就是使用dp[dp[i][1]][0]。
代码实现
class TreeAncestor {
private:
int n;
int size;
vector<vector<int>> dp;
public:
TreeAncestor(int n, vector<int>& parent) {
int flag = 1;
this->n = n;
int i = 0;
dp.push_back(parent);
while(flag)
{
flag = 0;
vector<int> tmp(n);
for(int j = 0; j < n; ++j)
{
if(dp[i][j] != -1)
{
tmp[j] = dp[i][dp[i][j]];
}
else
{
tmp[j] = -1;
}
if(tmp[j] != -1)
{
flag = 1;
}
}
dp.push_back(tmp);
++i;
}
size = dp.size();
}
int getKthAncestor(int node, int k) {
int i = size;
int result = node;
while(k)
{
if(k == 0)
{
return result;
}
if(k >= pow(2,i - 1))
{
result = dp[i - 1][result];
k -= pow(2,i - 1);
}
if(result == -1)
{
return -1;
}
--i;
}
return result;
}
};
复杂度分析
- 时间复杂度:因为用到了二分查找,所以只用进行 l o g ( n ) log(n) log(n)次搜索
- 空间复杂度:整个过程用了一个dp数组进行存放,空间复杂度 n l o g ( n ) nlog(n) nlog(n)
这是一篇关于如何在给定的树结构中找到一个节点的第k个祖先的算法解析。文章介绍了两种方法:暴力法和二分查找法。暴力法通过递归实现,时间复杂度为O(n),而二分查找法利用动态规划优化,时间复杂度降低到O(log n)。
1647

被折叠的 条评论
为什么被折叠?



