0031树节点的第k个祖先

这是一篇关于如何在给定的树结构中找到一个节点的第k个祖先的算法解析。文章介绍了两种方法:暴力法和二分查找法。暴力法通过递归实现,时间复杂度为O(n),而二分查找法利用动态规划优化,时间复杂度降低到O(log n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

树节点的第k个祖先

编号:0031

试题来源:leetcode

my blog:Something

试题描述

给定一棵树,树上有n个节点,按照从0n-1进行编号。树以父节点数组的形式给出,其中parent[i]是节点i的父节点。树的根节点是编号为0的节点。其中parent[0]=-1表示其没有父节点。

请设计并实现getKthAncestor(int node, int k)函数,返回值为节点node的第k个祖先节点。若不存在,则返回-1

树节点的第k个祖先节点是从该节点到根节点路径上的第k个节点。

限制:

  • 1 ≤ k ≤ n ≤ 5 ∗ 1 0 4 1\leq k\leq n\leq 5*10^4 1kn5104
  • parent[0]==-1表示编号为0的节点是根节点
  • 对于所有的 0 < i < n 0<i<n 0<i<n 0 ≤ p a r e n t [ i ] < n 0\leq parent[i] <n 0parent[i]<n总成立
  • 0 ≤ n o d e < n 0\leq node<n 0node<n
  • 至多查询 5 ∗ 1 0 4 5*10^4 5104

解答算法

暴力法

算法思路

很显然,最简单的方法就是进行递归调用getKthAncestor函数,我们要查找node的第k个父节点,也就是找node的父节点的第k-1个父节点,也就是调用getKthAncestor(parent[node],k-1)

递归调用的终止条件要么是k==0,说明当前节点就是返回值,要么是parent[node]==-1,说明查询不到满足条件的,返回-1

代码实现

class TreeAncestor {
private:
	int size;
	vector<int> parent;

public:
    TreeAncestor(int n, vector<int>& parent) {
    	size = n;
    	this->parent = parent;
    }
    
    int getKthAncestor(int node, int k) {  //递归调用
    	if(k == 0)
    	{
    		return node;
    	}
    	if(node == 0)
    	{
    		return -1;
    	}
    	return getKthAncestor(parent[node], k - 1);
    }
};

复杂度分析

  • 时间复杂度:最坏情况下,要遍历整个深度,因此时间复杂度为 O ( n ) O(n) O(n)
  • 空间复杂度:递归调用要使用栈空间,栈空间占用也为 O ( n ) O(n) O(n)

二分查找

算法思路

利用动态规划的思路,建立一个辅助的二维数组dp,其中dp[0][i]存放的是节点i的第 2 0 2^0 20个父节点,也即parent[i]

显然dp[i][j]的定义为节点j的第 2 i 2^i 2i个父节点,因此显然递推公式有
d p [ i ] [ j ] = d p [ i − 1 ] [ d p [ i − 1 ] [ j ] ] dp[i][j] = dp[i-1][dp[i-1][j]] dp[i][j]=dp[i1][dp[i1][j]]
然后就可以利用这个对我们要查找的第k个祖先节点进行拆分,将其划分成二进制数,然后依次进行寻找,例如我们要找寻第3个父节点,也就是使用dp[dp[i][1]][0]

代码实现

class TreeAncestor {
private:
	int n;
	int size;
	vector<vector<int>> dp;

public:
    TreeAncestor(int n, vector<int>& parent) {
    	int flag = 1;
    	this->n = n;
    	int i = 0;
    	dp.push_back(parent);
    	while(flag)
    	{
    		flag = 0;
    		vector<int> tmp(n);
    		for(int j = 0; j < n; ++j)
    		{
    			if(dp[i][j] != -1)
    			{
    				tmp[j] = dp[i][dp[i][j]];
    			}
    			else
    			{
    				tmp[j] = -1;
    			}
    			if(tmp[j] != -1)
    			{
    				flag = 1;
    			}
    		}
    		dp.push_back(tmp);
    		++i;
    	}
    	size = dp.size();
    }
    
    int getKthAncestor(int node, int k) {
    	int i = size;
    	int result = node;
    	while(k)
    	{
    		if(k == 0)
    		{
    			return result;
    		}
    		if(k >= pow(2,i - 1))
    		{
    			result = dp[i - 1][result];
    			k -= pow(2,i - 1);
    		}
    		if(result == -1)
    		{
    			return -1;
    		}
    		--i;
    	}
    	return result;
    }
};

复杂度分析

  • 时间复杂度:因为用到了二分查找,所以只用进行 l o g ( n ) log(n) log(n)次搜索
  • 空间复杂度:整个过程用了一个dp数组进行存放,空间复杂度 n l o g ( n ) nlog(n) nlog(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值