PID控制的通俗理解--小车控制

很多同学都不清楚PID是个什么东西,因为很多不是自动化的学生。他们开口就要资料,要程序。
这是明显的学习方法不对,起码,首先,你要理解PID是个什么东西。
本文以通俗的理解,以小车纵向控制举例说明PID的一些理解。
首先,为什么要做PID?
由于外界原因,小车的实际速度有时不稳定,这是其一,
要让小车以最快的时间达达到既定的目标速度,这是其二。
速度控制系统是闭环,才能满足整个系统的稳定要求,必竟速度是系统参数之一,这是其三.
    小车调速肯定不是线性的,外界因素那么多,没人能证明是线性的。如果是线性的,直接用P就可以了。
比如在PWM=60%时,速度是2M/S,那么你要它3M/S,就把PWM提高到90%。因为90/60=3/2,这样一来太完美了。
完美是不可能的。
    那么不是线性的,要怎么怎么控制PWM使速度达到即定的速度呢?即要快,又要准,又要狠。(即快准狠
)系统这个速度的调整过程就必须通过某个算法调整,一般PID就是这个所用的算法。
    可能你会想到,如果通过编码器测得现在的速度是2.0m/s,要达到2.3m/s的速度,那么我把pwm增大一点不
就行了吗?是的,增大pwm多少呢?必须要通过算法,因为PWM和速度是个什么关系,对于整个系统来说,谁也
不知道。要一点一点的试,加个1%,不够,再加1%还是不够,那么第三次你还会加1%吗?很有可能就加2%了。
通过PID三个参数得到一个表达式:△PWM=a *△V1+b *△V2+c *△V3,a b c是通过PID的那个长长的公式展开
,然后约简后的数字,△V1 ,△V2 ,△V3 此前第一次调整后的速度差 ,第二次调整后的速度差,第三次。。
。。。一句话,PID要使当前速度达到目标速度最快,需要建立如何调整pwm和速度之间的关系。
 
输入输出是什么:
输入就是前次速度,前前次速度,前前前次速度。
输出就是你的PWM应该增加或减小多少。
------------------------------------------------------------------------------------------------------------------------------------------------

为了避免教科书公式化的说明,本文用口语化和通俗的语言描述。虽然不一定恰当,但意思差不多,就是那个事。如果要彻头彻尾地弄PID,建议多调试,写几个仿真程序。

      PID一般有两种:位置式PID和增量式PID。在小车里一般用增量式,为什么呢?位置式PID输出与过去的所有状态有关,计算时要对e(每一次的控制误差)进行累加,这个计算量非常大,而明没有必要。而且小车的PID控制器的输出并不是绝对数值,而是一个△,代表增多少,减多少。换句话说,通过增量PID算法,每次输出是PWM要增加多少或者减小多少,而不是PWM的实际值。

下面均以增量式PID说明。

  这里再说一下PID三个参数的作用。P=Proportion,比例的意思,IIntegral,积分,DDifferential微分。

打个比方,如果现在的输出是1,目标输出是100,那么P的作用是以最快的速度达到100,把P理解为一个系数即可;而I呢?大家学过高数的,0的积分才能是一个常数,I就是使误差为0而起调和作用;D呢?大家都知道微分是求导数,导数代表切线是吧,切线的方向就是最快到至高点的方向。这样理解,最快获得最优解,那么微分就是加快调节过程的作用了。

公式本来需要推导的,我就不来这一套了。直接贴出来:飞思小车PID控制的通俗理解 - 乱舞春秋 - W H Y(尚书~学习分站)

 

 

看看最后的结果:

 

Uk=A*e(k)+B*e(k-1)+C*e(k-2)

这里KPP的值,TDD的值,1/TiI的值,都是常数,哦,还有一个TT是采样周期,也是已知。A  B  C是由P I D换算来的,按这个公式,就可以简化计算量了,因为 P I D 是常数,那么A B C可以用一个宏表示。这样看来,只需要求e(k) e(k-1) e(k-2)就可以知道△Uk的值了,按照△Uk来调节PWM的大小就OK了。PID三个参数的确定有很多方法,不在本文讨论范围内。采样周期也是有据可依的,不能太大,也不能太小。

   ........................

   ........................

   写着写着成了老太婆的裹脚了,本来说拿个程序来说明一下,看来只能在下一文中了。

--------------------------------------------------------------------------------

PID实际编程的过程的,要注意的东西还是有几点的。PID这东西可以做得很深。

1 PID的诊定。凑试法,临界比例法,经验法。

2 T的确定,采样周期应远小于过程的扰动信号的周期,在小车程序中一般是ms级别。

3 目标速度何时赋值问题,如何更新新的目标速度?这个问题一般的人都乎略了。目标速度肯定不是个恒定的,那么何时改变目标速度呢?

4 改变了目标速度,那么e(k) e(k-1) e(k-2)怎么改变呢?是赋0还是要怎么变?

5 是不是PID要一直开着?

6 error为多少时就可以当速度已达到目标?

7 PID的优先级怎么处理,如果和图像采集有冲突怎么办?

8 PID的输入是速度,输出是PWM,按理说PWM产生速度,但二者不是同一个东西,有没有问题?

9 PID计算如何优化其速度?指针,汇编,移位?都可以试!

//*****************************************************

//定义PID结构体

//*****************************************************

typedef struct PID

{

    int SetPoint; //设定目标 Desired Value

    double Proportion; //比例常数 Proportional Const

    double Integral; //积分常数 Integral Const

    double Derivative; //微分常数 Derivative Const

    int LastError; //Error[-1]

    int PrevError; //Error[-2]

} PID;

//*****************************************************

//定义相关宏

//*****************************************************

#define P_DATA 100

#define I_DATA  0.6

#define D_DATA  1

#define HAVE_NEW_VELOCITY 0X01

//*****************************************************

//声明PID实体

//*****************************************************

static PID sPID;

static PID *sptr = &sPID;

//*****************************************************

//PID参数初始化

//*****************************************************

void IncPIDInit(void)

{

sptr->LastError = 0; //Error[-1]

sptr->PrevError = 0; //Error[-2]

sptr->Proportion = P_DATA; //比例常数 Proportional Const

sptr->Integral = I_DATA; //积分常数Integral Const

sptr->Derivative = D_DATA; //微分常数 Derivative Const

sptr->SetPoint =100;  目标是100

}

//*****************************************************

//增量式PID控制设计

//*****************************************************

int IncPIDCalc(int NextPoint)

{

   int iError, iIncpid; //当前误差

   iError = sptr->SetPoint - NextPoint; //增量计算

   iIncpid = sptr->Proportion * iError //E[k]

             - sptr->Integral * sptr->LastError //E[k1]

             + sptr->Derivative * sptr->PrevError; //E[k2]

    sptr->PrevError = sptr->LastError;   //存储误差,用于下次计算

    sptr->LastError = iError;

    return(iIncpid);                          //返回增量值

}

Int g_CurrentVelocity;

Int g_Flag;

 

void main(void)

{

    DisableInterrupt

InitMCu();

    IncPIDInit();

g_CurrentVelocity=0;   //全局变量也初始化

g_Flag=0;                //全局变量也初始化

EnableInterrupt;

     While(1)

{

   if (g_Flag& HAVE_NEW_VELOCITY)

      {

          PWMOUT+= IncPIDCalc(CurrentVelocity);

            g_Flag&=~ HAVE_NEW_VELOCITY;

}

}

}

//****************************************

//采样周期T

//****************************************

Interrrupt TIME void

{

   CurrentVelocity =GetCurrentVelocity;

   g_Flag|= HAVE_NEW_VELOCITY;

}

 

<think>好的,我需要回答用户关于PID控制器中速度环的实现和原理的问题。首先,我需要回顾一下已有的引用资料,确保回答准确并引用合适的来源。 根据引用[2]、[3]、[4]和[5],速度环是PID控制中的一个内环,通常与位置环组成双环控制。速度环的核心是PID算法,通过测量实际速度与目标速度的误差,调整输出控制量,比如电机的PWM信号。实现步骤包括测量当前速度、计算误差、执行PID运算并调整输出。参数整定是关键,需要调节Kp、Ki、Kd以达到理想响应。此外,双环控制中,外环的输出作为内环的目标,这会影响系统的稳定性和响应速度。需要注意的问题包括积分饱和、噪声处理以及参数调节的幅度。 接下来,我需要将这些信息结构化,分点解释原理和实现步骤,同时引用相关文献。还要确保使用正确的LaTeX格式,比如独立公式用$$...$$,行内用$...$。最后生成相关问题,帮助用户进一步学习。</think>### PID控制器中速度环的原理与实现 #### 一、速度环的核心原理 速度环是PID控制在电机控制中的典型应用,其核心是通过**比例(P)、积分(I)、微分(D)**三环节的叠加计算,修正实际速度与目标速度的偏差,最终实现精准控制。 1. **控制目标** 速度环的目标是使电机转速$v_{\text{实际}}$快速、稳定地跟踪目标转速$v_{\text{目标}}$。通过实时计算误差$e(t) = v_{\text{目标}} - v_{\text{实际}}$,并基于PID公式生成控制量$u(t)$: $$u(t) = K_p \cdot e(t) + K_i \cdot \int_0^t e(\tau)d\tau + K_d \cdot \frac{de(t)}{dt}$$ 其中,$K_p$、$K_i$、$K_d$为控制参数[^2][^4]。 2. **双环控制中的作用** 在位置-速度双环控制中,速度环作为内环接收外环(位置环)的输出值作为目标转速。例如,当系统接近目标位置时,位置环输出的目标转速会逐渐减小,从而实现平滑减速[^5]。 --- #### 二、实现步骤(以电机控制为例) 1. **测量当前速度** 使用编码器或霍尔传感器获取电机实时转速。例如,STM32可通过定时器捕获脉冲频率计算转速[^3][^4]。 2. **PID运算与输出调整** - **比例项(P)**:快速响应误差,但过大会导致振荡。 - **积分项(I)**:消除稳态误差,但可能引起积分饱和。 - **微分项(D)**:抑制超调,但对噪声敏感。 代码示例(简化逻辑): ```c float PID_Speed(float target, float current) { static float integral = 0, prev_error = 0; float error = target - current; integral += error * dt; // dt为采样周期 float derivative = (error - prev_error) / dt; prev_error = error; return Kp*error + Ki*integral + Kd*derivative; } ``` 3. **输出执行** 将PID输出转换为PWM占空比或电流信号,驱动电机。例如,输出值限幅在0~100% PWM范围。 --- #### 三、关键问题与优化 1. **参数整定** 通过试凑法(如Ziegler-Nichols法)或自整定算法调整$K_p$、$K_i$、$K_d$。双环控制中需优先调节内环(速度环)参数。 2. **抗积分饱和** 采用积分分离或输出限幅,避免长时间误差累积导致控制量溢出。 3. **噪声抑制** 对速度测量值进行滤波(如移动平均滤波),减少微分项对高频噪声的敏感度[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值