learner1333
码龄5年
关注
提问 私信
  • 博客:363
    363
    总访问量
  • 2
    原创
  • 963,818
    排名
  • 0
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2020-01-21
博客简介:

learner1333的博客

查看详细资料
个人成就
  • 获得0次点赞
  • 内容获得0次评论
  • 获得0次收藏
创作历程
  • 2篇
    2020年
TA的专栏
  • 周志华机器学习笔记
    2篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习pytorch图像处理
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

周志华《机器学习》笔记1

没有免费午餐定理(No free lunch Theorem) 前提:当所有“问题”出现的概率相等,或者我们同时关注机器学习中所有的问题。 内容:如果一种算法A,在某些问题上好于算法B,那么必然存在另一些问题,使得算法A性能弱于B。 数学证明:对于同一样本空间,总误差与学习算法无关 含义:脱离特定的实际问题,是无法讨论算法的优劣的。特定的学习问题有特定适合的算法,不应该拘泥于某种算法,而是根据实际问题选择。 机器学习主流技术 1. 从样例中学习 顾名思义,即根据数据特征进行学习,如决策树,BP神经网络
原创
发布博客 2020.10.09 ·
127 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

周志华《机器学习》笔记 0

学习动机 我初次接触机器学习的契机,是在进行科研训练时,需要搭建相关的神经学习网络,因而看了一些网课以及速成教程。在完成pytorch /tensorflow 等平台的搭建后,可以利用其提供的集成工具,几行代码就可以快速搭建起想要的模型(SVM 或 CNN 网络等等),可谓非常便捷,极易入门。但是,这样速成的做法并没有使我更了解机器学习,反而流于表面。因此,我打算拜读一下周志华老师的著作《机器学习》,尽量在这一学期内完成1~10章的学习。通过认真的阅读,争取对机器学习有更好的认识。 我写此博客的初心,主要是
原创
发布博客 2020.10.06 ·
236 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏