特征标准化的优点:
归一化后,样本量纲一致,计算精度提高,提高收敛速度。
特征标准化的方法:
1.线性归一化:
该方法适用于样本分布较为集中的时候,否则归一化结果不够稳定,归一化结果范围为0~1
2.标准差标准化
该方法适用于样本原始分布近似于高斯分布,归一化结果范围为0~1
3.非线性归一化
使用log,tanh等,经常用在数据分化比较大的场景,有些数值很大,有些很小。通过一些数学函数,将原始值进行映射。
特征标准化的优点:
归一化后,样本量纲一致,计算精度提高,提高收敛速度。
特征标准化的方法:
1.线性归一化:
该方法适用于样本分布较为集中的时候,否则归一化结果不够稳定,归一化结果范围为0~1
2.标准差标准化
该方法适用于样本原始分布近似于高斯分布,归一化结果范围为0~1
3.非线性归一化
使用log,tanh等,经常用在数据分化比较大的场景,有些数值很大,有些很小。通过一些数学函数,将原始值进行映射。