hiho一下 #1378 : 网络流二·最大流最小割定理 【最大流及S集合】

#1378 : 网络流二·最大流最小割定理

时间限制: 10000ms
单点时限: 1000ms
内存限制: 256MB
描述

小Hi:在上一周的Hiho一下中我们初步讲解了网络流的概念以及常规解法,小Ho你还记得内容么?

小Ho:我记得!网络流就是给定了一张图G=(V,E),以及源点s和汇点t。每一条边e(u,v)具有容量c(u,v)。网络流的最大流问题求解的就是从s到t最多能有多少流量。

小Hi:那这个问题解决办法呢?

小Ho:解决网络流的基本思路就是寻找增广路,不断更新残留网络。直到找不到新的增广路,此时得到的流就是该网络的最大流。

小Hi:没错,看来你记得很牢嘛。

小Ho:哎嘿嘿,不过这里我有一个问题,为什么找不到增广路时就已经找到了最大流呢?

小Hi:这一次我就来解决你的疑惑,首先我们要从网络流的割开始讲起。

对于一个网络流图G=(V,E),其割的定义为一种点的划分方式:将所有的点划分为S和T=V-S两个部分,其中源点s∈S,汇点t∈T。

对于一个割(S,T),我们定义净流f(S,T)表示穿过割(S,T)的流量之和,即:

f(S,T) = Σf(u,v) | u∈S,v∈T

举个例子(该例子选自算法导论):

净流f = f(2,4)+f(3,4)+f(3,5) = 12+(-4)+11 = 19

同时我们定义割的容量C(S,T)为所有从S到T的边容量之和,即:

C(S,T) = Σc(u,v) | u∈S,v∈T

同样在上面的例子中,其割的容量为:

c(2,4)+c(3,5)=12+14=26

小Ho:也就是说在计算割(S,T)的净流f(S,T)时可能存在反向的流使得f(u,v)<0,而容量C(S,T)一定是非负数。

小Hi:你这么说也没错。实际上对于任意一个割的净流f(S,T)总是和网络流的流量f相等。比如上面例子中我们改变一下割的方式:

可以计算出对于这两种情况净流f(S,T)仍然等于19。

一个直观的解释是:根据网络流的定义,只有源点s会产生流量,汇点t会接收流量。因此任意非s和t的点u,其净流量一定为0,也即是Σ(f(u,v))=0。而源点s的流量最终都会通过割(S,T)的边到达汇点t,所以网络流的流f等于割的静流f(S,T)。

严格的证明如下:

f(S,T) = f(S,V) - f(S,S)
从S到T的流等于从S到所有节点的流减去从S到S内部节点的流
f(S,T) = f(S,V)
由于S内部的节点之间存在的流一定有对应的反向流,因此f(S,S)=0
f(S,T) = f(s,V) + f(S-s,V)
再将S集合分成源点s和其他属于S的节点
f(S,T) = f(s,V)
由于除了源点s以外其他节点不会产生流,因此f(S-s,V)=0
f(S,T) = f(s,V) = f

所以f(S,T)等于从源点s出来的流,也就是网络的流f。

小Ho:简单理解的话,也就是说任意一个割的净流f(S,T)都等于当前网络的流量f

小Hi:是这样的。而对于任意一个割的净流f(S,T)一定是小于等于割的容量C(S,T)。那也即是,对于网络的任意一个流f一定是小于等于任意一个割的容量C(S,T)。

而在所有可能的割中,存在一个容量最小的割,我们称其为最小割

这个最小割限制了一个网络的流f上界,所以有:

对于任一个网络流图来说,其最大流一定是小于等于最小割的。

小Ho:但是这和增广路又有什么关系呢?

小Hi:接下来就是重点了。利用上面讲的知识,我们可以推出一个最大流最小割定理

对于一个网络流图G=(V,E),其中有源点s和汇点t,那么下面三个条件是等价的:
1. 流f是图G的最大流
2. 残留网络Gf不存在增广路
3. 对于G的某一个割(S,T),此时f = C(S,T)

首先证明1 => 2

我们利用反证法,假设流f是图G的最大流,但是残留网络中还存在有增广路p,其流量为fp。则我们有流f'=f+fp>f。这与f是最大流产生矛盾。

接着证明2 => 3

假设残留网络Gf不存在增广路,所以在残留网络Gf中不存在路径从s到达t。我们定义S集合为:当前残留网络中s能够到达的点。同时定义T=V-S。
此时(S,T)构成一个割(S,T)。且对于任意的u∈S,v∈T,有f(u,v)=c(u,v)。若f(u,v)<c(u,v),则有Gf(u,v)>0,s可以到达v,与v属于T矛盾。
因此有f(S,T)=Σf(u,v)=Σc(u,v)=C(S,T)。

最后证明3 => 1

由于f的上界为最小割,当f到达割的容量时,显然就已经到达最大值,因此f为最大流。

这样就说明了为什么找不到增广路时,所求得的一定是最大流。

小Ho:原来是这样,我明白了。

输入

第1行:2个正整数N,M。2≤N≤500,1≤M≤20,000。

第2..M+1行:每行3个整数u,v,c(u,v),表示一条边(u,v)及其容量c(u,v)。1≤u,v≤N,0≤c(u,v)≤100。

给定的图中默认源点为1,汇点为N。可能有重复的边。

输出

第1行:2个整数A B,A表示最小割的容量,B表示给定图G最小割S集合的点数。

第2行:B个空格隔开的整数,表示S集合的点编号。

若存在多个最小割可以输出任意一个的解。

样例输入
6 7
1 2 3
1 3 5
2 4 1
3 4 2
3 5 3
4 6 4
5 6 2
样例输出
5 4
1 2 3 5

求完最大流后,s所能达到的点都是S集合的


代码:

#include<cstdio>
#include<cstring>
#include<vector>
#include<iostream>
#include<algorithm>
using namespace std;
struct node{
    int to,w,vap;
}Q;
int n,m,shu;
bool fafe[505];
vector<node> V[505];
void add_edge(int a,int b,int c)
{
    Q.to=b;Q.w=c;Q.vap=V[b].size();
    V[a].push_back(Q);
    Q.to=a;Q.w=0;Q.vap=V[a].size()-1;
    V[b].push_back(Q);
}
int ex_dfs(int x,int mi)
{
    fafe[x]=true;
    if (x==n) return mi;
    for (int i=0;i<V[x].size();i++)
    {
        if (fafe[V[x][i].to]||V[x][i].w==0) continue;
        int k=ex_dfs(V[x][i].to,min(mi,V[x][i].w));
        if (k)
        {
            V[x][i].w-=k;
            V[V[x][i].to][V[x][i].vap].w+=k;
            return k;
        }
    }
    return 0;
}
void dfs_(int x,int lei)
{
    fafe[x]=true;shu++;
    if (lei==1)
        printf("%d%c",x,m==shu?'\n':' ');
    for (int i=0;i<V[x].size();i++)
    {
         if (fafe[V[x][i].to]||V[x][i].w==0) continue;
         dfs_(V[x][i].to,lei);
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    int a,b,c;
    while (m--)
    {
        scanf("%d%d%d",&a,&b,&c);
        add_edge(a,b,c);
    }
    int ans=0;a=1;
    while (a)
    {
        a=0;
        memset(fafe,false,sizeof(fafe));
        a=ex_dfs(1,11111);
        ans+=a;
    }
    memset(fafe,false,sizeof(fafe));
    shu=0;dfs_(1,0);m=shu;
    memset(fafe,false,sizeof(fafe));
    printf("%d %d\n",ans,m);
    shu=0;dfs_(1,1);
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值