springai多个模型切换如何做

Spring AI 在 1.0.0 及以上 的推荐做法:
给每个模型单独声明一个 ChatModel Bean,然后用 限定名动态选项 切换。下面给出两种常用姿势,复制即可跑。


一、静态切换(多 Bean,代码里指名使用)

  1. 配置两个模型

yaml

复制

spring:
  ai:
    openai:
      base-url: https://api.moonshot.cn/v1
      api-key: ${MOON_KEY}
      chat:
        options:
          model: moonshot-v1-8k          # 默认
          temperature: 0.3

deepseek:
  ai:
    openai:
      base-url: https://api.deepseek.com
      api-key: ${DS_KEY}
      chat:
        options:
          model: deepseek-chat
          temperature: 0.7
  1. 显式声明两个 ChatModel

java

复制

@Configuration
public class MultiModelConfig {

    /* ---------- Moonshot ---------- */
    @Bean("moonChatModel")
    public OpenAiChatModel moonshotChatModel(
            @Value("${deepseek.ai.openai.base-url}") String baseUrl,
            @Value("${deepseek.ai.openai.api-key}") String apiKey) {
        return new OpenAiChatModel(
                OpenAiApi.builder().baseUrl(baseUrl).apiKey(apiKey).build(),
                OpenAiChatOptions.builder()
                        .model("moonshot-v1-32k")
                        .temperature(0.3)
                        .build());
    }

    /* ---------- DeepSeek ---------- */
    @Bean("dsChatModel")
    public OpenAiChatModel deepseekChatModel(
            @Value("${deepseek.ai.openai.base-url}") String baseUrl,
            @Value("${deepseek.ai.openai.api-key}") String apiKey) {
        return new OpenAiChatModel(
                OpenAiApi.builder().baseUrl(baseUrl).apiKey(apiKey).build(),
                OpenAiChatOptions.builder()
                        .model("deepseek-chat")
                        .temperature(0.7)
                        .build());
    }
}
  1. 使用时按名注入

java

复制

@RestController
@RequestMapping("/bot")
class ChatController {

    @Resource(name = "moonChatModel")
    private ChatModel moonModel;

    @Resource(name = "dsChatModel")
    private ChatModel dsModel;

    @GetMapping("/moon")
    public String moon(@RequestParam String q) {
        return ChatClient.builder(moonModel).build()
                .prompt().user(q).call().content();
    }

    @GetMapping("/ds")
    public String ds(@RequestParam String q) {
        return ChatClient.builder(dsModel).build()
                .prompt().user(q).call().content();
    }
}

二、动态切换(单 ChatClient,运行时换模型)

java

复制

@Autowired   // 默认自动配置的那个
private ChatClient chatClient;

@GetMapping("/chat")
public String chat(@RequestParam String q,
                   @RequestParam(defaultValue = "moonshot-v1-8k") String model) {
    return chatClient.prompt()
            .user(q)
            .options(OpenAiChatOptions.builder()
                    .model(model)          // 运行时指定
                    .temperature(0.5)
                    .build())
            .call()
            .content();
}

请求示例
GET /chat?q=你好&model=moonshot-v1-32k
GET /chat?q=你好&model=deepseek-chat


三、小结

表格

复制

场景做法
固定模型/不同业务多 ChatModel Bean + @Qualifier
用户侧随时切换单 ChatClient + .options(...)
密钥/地址不同手动 new OpenAiChatModel(...)

一句话:“多 Bean 静态注入”或“单 Client 动态 options”——Spring AI 官方只推荐这两种方式,其余自己封装即可。

<think>嗯,用户的问题是关于如何使用Spring AI构建多模型对话平台。从对话历史来看,用户之前可能已经接触过Spring AI的基本概念,现在想深入探讨多模型集成的方案。用户提供的三个引用材料很有价值,特别是引用[2][3]具体提到了DeepSeek的整合示例。 用户可能是个Java开发者,正在设计需要同时接入多个AI模型(如OpenAI、DeepSeek、Ollama等)的系统。真正的需求不仅仅是技术实现,更关注如何优雅地管理不同模型切换扩展。考虑到引用[3]展示了Ollama配置DeepSeek模型的示例,这可能是用户想扩展的方向。 需要重点解决几个核心问题:首先是统一接口设计,Spring AI的ChatClient确实能抽象不同模型;其次是配置管理,引用[3]的YAML示例很有参考价值;最后是扩展性,要说明如何新增模型。用户没有明确说业务场景,但多模型平台通常用于A/B测试或故障转移,这点在回答中可以暗示。 在技术细节上,要强调三个关键层:配置层(application.yml多profile)、服务层(策略模式+工厂模式)、执行层(统一Prompt/Response格式)。引用[2]提到的spring-ai-openaispring-ai-ollama两个starter正是多模型的基础,这点必须突出。 安全方面用户没提,但企业级应用需要考虑密钥管理,所以补充了Vault方案。性能部分则参考了引用[3]的Redis缓存思路。最后生成的问题特意加入了"路由策略",因为多模型平台的核心难点其实是流量分配逻辑。</think>使用Spring AI构建多模型对话平台,关键在于**统一接口抽象****动态模型路由**。以下是具体实现步骤: --- ### 一、核心架构设计 ```mermaid graph TD A[用户请求] --> B(路由控制器) B --> C{模型选择策略} C -->|默认模型| D[OpenAI服务] C -->|指定模型| E[DeepSeek服务] C -->|自定义模型| F[Ollama服务] D & E & F --> G(统一响应封装) G --> H[返回结果] ``` --- ### 二、具体实现步骤 #### 1. 依赖配置(pom.xml) ```xml <dependencies> <!-- 多模型支持 --> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-openai-spring-boot-starter</artifactId> <version>0.8.1</version> </dependency> <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-ollama-spring-boot-starter</artifactId> <version>0.8.1</version> </dependency> <!-- 其他必要依赖 --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> </dependencies> ``` #### 2. 多模型配置(application.yml) ```yaml spring: ai: # OpenAI配置 openai: api-key: ${OPENAI_KEY} base-url: https://api.openai.com chat: model: gpt-4-turbo # DeepSeek配置(通过Ollama本地部署) ollama: base-url: http://localhost:11434 chat: model: deepseek-r1:7b # 自定义模型路由表 model-router: default-model: openai model-mappings: deepseek: ollama gpt4: openai ``` #### 3. 统一服务层接口 ```java public interface AIChatService { String generate(String message, String modelId); } @Service public class MultiModelChatService implements AIChatService { private final ModelRouter modelRouter; private final Map<String, ChatClient> clientMap; // 自动注入所有ChatClient实现 @Override public String generate(String message, String modelId) { String targetModel = modelRouter.route(modelId); // 路由决策 return clientMap.get(targetModel) .call(new Prompt(message)) .getResult().getOutput().getContent(); } } ``` #### 4. 动态路由策略(示例) ```java @Configuration public class ModelRouterConfig { @Bean public ModelRouter modelRouter( @Value("${spring.ai.model-router.default-model}") String defaultModel, @Value("#{${spring.ai.model-router.model-mappings}}") Map<String, String> mappings) { return modelId -> mappings.getOrDefault(modelId, defaultModel); } } ``` #### 5. 控制器层 ```java @RestController @RequestMapping("/ai") public class AIController { @Autowired private AIChatService chatService; @PostMapping("/chat") public ResponseEntity<String> chat( @RequestBody ChatRequest request, @RequestParam(required = false) String model) { String response = chatService.generate(request.getMessage(), model); return ResponseEntity.ok(response); } } // 请求体示例 public record ChatRequest(String message) {} ``` --- ### 三、高级功能扩展 1. **故障转移** 在`ModelRouter`中添加重试逻辑,当主模型失败时自动切换备用模型 ```java if (primaryModelFailed) { return mappings.get("fallback-model"); } ``` 2. **负载均衡** 对同类型模型实例使用轮询策略: ```java List<ChatClient> gptClients = // 获取所有GPT实例 int index = ThreadLocalRandom.current().nextInt(gptClients.size()); return gptClients.get(index); ``` 3. **缓存优化** 使用Redis缓存高频请求结果: ```java @Cacheable(value = "aiResponses", key = "#message.concat(#modelId)") public String generate(String message, String modelId) { ... } ``` --- ### 四、部署建议 1. **配置分离** 将敏感信息(API Keys)存储在Vault或Kubernetes Secrets中 2. **性能监控** 集成Micrometer监控各模型响应时间: ```java @Timed(value = "ai.model.response", tags = {"model", modelId}) public String generate(...) { ... } ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

leijmdas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值