FSL 6.07安装 本来已经不想再用FSL,貌似还是避不开,过了两年多,有安装了FSL,安装教程满大街,这里只是说一下变化,貌似,最新得6.0.7安装文件不限制python2了。然后安装过程会先安装一个miniconda环境,后续下载FSL安装,其他应该没啥差别了。后续好像是要自己手动设置一下路径,安装过程没有自动设置。
VTK9.0的奇怪错误 使用命令行测试的时候,总是报这个错误,似乎是显卡问题,还在侦察Generic Warning: In D:\soft\fMRI_win\VTK-9.0.1\Rendering\OpenGL2\vtkOpenGLState.cxx, line 505Error glBindFramebuffer1 OpenGL errors detected 0 : (1282) Invalid operationwith stack trace ofat vtksys::Encoding::Comm...
VTK9.0.1编译 vs2019 win10 网上的VTK9.0编译并集成到qt designer中大多有问题,下面这个是我自己编译成功的设置好source code位置,设置好编译位置需要使用QT的话,设置vtk_group_enable_qt为yes设置Qt5_DIR为QT安装目录下cmake文件的位置,反复configure,直到没有飘红之后generate生成平台项目本人使用VS2019,直接运行,编译即可最后再次编译install项目才会生成这些文件,否则,头文件和库文件是散落在各处的关
数学分析 1】人生的痛苦在于追求错误的东西。所谓追求错误的东西,就是你在无限趋近于它的时候,才猛然发现,你和它是不连续的。2】人和人就像数轴上的有理数点,彼此可以靠得很近很近,但你们之间始终存在隔阂。3】人是不孤独的,正如数轴上有无限多个有理点,在你的任意一个小邻域内都可以找到你的伙伴。但人又是寂寞的,正如把整个数轴的无理点标记上以后,就一个人都见不到了。4】人和命运的关系就像F(x)=x与G(
罗斯·利特尔伍德悖论 我们有无限个球和一个花瓶,现在我们要对它们进行一系列操作。每次操作都是一样的:往花瓶里放 10 个球,然后取出 1 个球。那么,无穷多次这样的操作之后,花瓶里有多少个球呢?有人或许会说,这个问题显然是荒谬的——这个过程需要耗费无穷的时间,我们不可能等到那个时候。那么,我们不妨换一个问法,避开所需时间无穷的问题:在差一分钟到正午 12 点时进行第 1 次操作,在差 30 秒(1/2 分钟)到
glPolygonMode函数 void glPolygonMode(GLenum face,GLenum mode )face的可取值为 GL_FRONT, GL_BACK, GL_FRONT_ANDBACK.mode : GL_FILLopenGL的图形渲染默认为实心的,可通过次函数将其设定为实心,线框,或者点。
重新学习蓝宝书 这一段时间作为一个非计算机专业的学习图形学,自有许多难处,竞夺许多波折,重新学习了线性代数、数学分析、抽象代数,感触良多。许多东西的确不需要自己在写一遍。曾经一直觉得第五版用作者自己的库,隐藏了许多细节,给理解上造成了诸多不便,但是曾经的以为坛友说过,蓝宝书的作者一开始的本意是隐藏一些细节,使读者很容易边可以写出一些自己的东西,只要按照书一直学下去自由收获,现在想来的确如此。如果自己住个实现数学库
递归的四大法则 1. 基准情形: 必须有某些基准情形,她无需递归即可解出。2. 不断推进: 对于需要递归求解的情形,每次递归调用都必须使得求解状况朝着基准情形推进。3. 设计法则: 假设所有的递归调用都能运行。4. 合成效益法则:在求解一个问题的同一实例时,切勿在不同的递归调用中做重复性工作。 其中第四点在递归的效率中至为关键。这是为什么用递归实现斐波那契数列效率很
关于冯.诺依曼的八卦 。von Neumann曾经碰到别人问他一个估计中国小学生都很熟的问题,就是两个人相向而行,中间有一只狗跑来跑去,问两个人相遇之后,狗走了多少的这种。应该先求出相遇的时间,再乘狗的速度。如果没有什么记错的话,小时候听说过苏步青先生在德国的一个什么公共汽车上,就有人问他这个问题,他老人家当然不会感到有什么困难了。von Neumann也是瞬间给出了答案,提问的人很失望,说你以前一定听说过这个诀窍吧,
数学八卦 Hilbert(希尔伯特)曾有一个学生,给了他一篇论文来证明Riemann(黎曼)猜想,尽管其中有个无法挽回的错误,Hilbert还是被深深的吸引了。第二年,这个学生不知道怎么回事就死了,Hilbert要求在葬礼上做一个演说。那天,风雨瑟瑟,这个学生的家属们哀不胜收。Hilbert开始致词,首先指出,这样的天才这么早离开我们实在是痛惜呀,众人同感,哭得越来越凶。接下来,Hilbert说,尽管这
如何学好数学 本来打算翻译的,但太长就懒得翻译了!http://math-blog.com/Published on Mar 17, 2014 10:00 amMr. Jabez Wilson laughed heavily. “Well, I never!” said he. “I thought at first that you had done something cle
各种把妹法——太强大了! 巴甫洛夫把妹法曾经有一位生物学人士,公布了工科把妹第一弹,暨“巴甫洛夫把妹法”: 每天给你那位心仪的女同事/女同学的抽屉里都放上精心准备的早餐,并且保持缄默不语,无论她如何询问,都不要说话。 如此坚持一至两个月,当妹子已经对你每天的准时早餐习以为常时,突然停止送餐,她心中一定会产生深深的疑惑及失落,同时会满怀兴趣与疑问找到你询问,这时再一鼓作气将其拿下。 此法借鉴了不朽的生
线性代数的疑惑 转载这篇文章是考虑到可能大多数学线性代数的人都有这些疑问。但如果用david.C.Lay的线性代数及其应用,我想应该不会有这些困惑。中文的翻译版,如果觉得是打广告大可略过不看!http://www.amazon.cn/%E7%BA%BF%E6%80%A7%E4%BB%A3%E6%95%B0%E5%8F%8A%E5%85%B6%E5%BA%94%E7%94%A8-%E8%8E
openGL介绍 原文在此:http://blog.csdn.net/silangquan/article/details/20307363#comments翻译自《 OpenGL Programming Guide》(8th) 第一章,标题为 Introduction to OpenGL。红宝书第八版和第七版的最大的区别就是OpenGL的版本从OpenGL2.X变成了OpenGL4.
SAS常用过程 1、PROC MEANS--数据描述:计算均数、标准差、最大值、最小值、变量有效数据个数、变量缺失个数2、PROC UNIVARIATE--正态性检验3、PROC TTEST--两独立样本检验4、PROC NPAR1WAR--秩和检验5、PROC ANOVA--方差分析6、PROC CORR--相关性分析7、PROC REG--回归分析8、P
C语言 fscanf 函数原型:int fscanf( FILE *stream,const char *format [,argument ]... );例子如下:#include #include int main(void){ int i; printf("Input an integer: "); /* read an integer