分享一个Python工具plottable,轻松制作高度个性化的表格,底层为Matplotlib。
例如这样的,或者这样的,第一张图详细代码:
# 导入相关包
from pathlib import Path
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from matplotlib.colors import LinearSegmentedColormap
from plottable import ColumnDefinition, Table
from plottable.cmap import normed_cmap
from plottable.formatters import decimal_to_percent
from plottable.plots import circled_image
plt.rcParams["font.family"] = ["DejaVu Sans"]
plt.rcParams["savefig.bbox"] = "tight"
# demo数据准备
cols = [
"team",
"points",
"group",
"spi",
"global_o",
"global_d",
"group_1",
"group_2",
"group_3",
"make_round_of_16",
"make_quarters",
"make_semis",
"make_final",
"win_league",
]
df = pd.read_csv(
"data/wwc_forecasts.csv",
usecols=cols,
)
colnames = [
"Team",
"Points",
"Group",
"SPI",
"OFF",
"DEF",
"1st Place",
"2nd Place",
"3rd Place",
"Make Rd Of 16",
"Make Quarters",
"Make Semis",
"Make Finals",
"Win World Cup",
]
col_to_name = dict(zip(cols, colnames))
flag_paths = list(Path("country_flags").glob("*.png"))
country_to_flagpath = {p.stem: p for p in flag_paths}
df[["spi", "global_o", "global_d"]] = df[["spi", "global_o",
"global_d"]].round(1)
df = df.rename(col_to_name, axis=1)
df = df.drop("Points", axis=1)
df.insert(0, "Flag", df["Team"].apply(lambda x: country_to_flagpath.get(x)))
df = df.set_index("Team")
# colormap准备
cmap = LinearSegmentedColormap.from_list(
name="bugw",
colors=["#ffffff", "#f2fbd2", "#c9ecb4", "#93d3ab", "#35b0ab"],
N=256)
team_rating_cols = ["SPI", "OFF", "DEF"]
group_stage_cols = ["1st Place", "2nd Place", "3rd Place"]
knockout_stage_cols = list(df.columns[-5:])
# table列个性化list,例如列名、列宽、字体、磅值等等
col_defs = ([
ColumnDefinition(
name="Flag",
title="Region",
textprops={"ha": "center"},
width=0.5,
plot_fn=circled_image,
),
ColumnDefinition(
name="Team",
textprops={
"ha": "left",
"weight": "bold"
},
width=1.5,
),
ColumnDefinition(
name="Group",
textprops={"ha": "center"},
width=0.75,
),
ColumnDefinition(
name="SPI",
group="Team Rating",
textprops={"ha": "center"},
width=0.75,
),
ColumnDefinition(
name="OFF",
width=0.75,
textprops={
"ha": "center",
"bbox": {
"boxstyle": "circle",
"pad": 0.35
},
},
cmap=normed_cmap(df["OFF"], cmap=matplotlib.cm.Blues, num_stds=2.5),
group="Team Rating",
),
ColumnDefinition(
name="DEF",
width=0.75,
textprops={
"ha": "center",
"bbox": {
"boxstyle": "circle",
"pad": 0.35
},
},
cmap=normed_cmap(df["DEF"], cmap=matplotlib.cm.Greens, num_stds=2.5),
group="Team Rating",
),
] + [
ColumnDefinition(
name=group_stage_cols[0],
title=group_stage_cols[0].replace(" ", "\n", 1),
formatter=decimal_to_percent,
group="Group Stage Chances",
border="left",
)
] + [
ColumnDefinition(
name=col,
title=col.replace(" ", "\n", 1),
formatter=decimal_to_percent,
group="Group Stage Chances",
) for col in group_stage_cols[1:]
] + [
ColumnDefinition(
name=knockout_stage_cols[0],
title=knockout_stage_cols[0].replace(" ", "\n", 1),
formatter=decimal_to_percent,
cmap=cmap,
group="Knockout Stage Chances",
border="left",
)
] + [
ColumnDefinition(
name=col,
title=col.replace(" ", "\n", 1),
formatter=decimal_to_percent,
cmap=cmap,
group="Knockout Stage Chances",
) for col in knockout_stage_cols[1:]
])
# plottable的Table方法制作表格
fig, ax = plt.subplots(figsize=(20, 22))
table = Table(
df,
column_definitions=col_defs,
row_dividers=True,
footer_divider=True,
ax=ax,
textprops={
"fontsize": 14
},
row_divider_kw={
"linewidth": 1,
"linestyle": (0, (1, 5))
},
col_label_divider_kw={
"linewidth": 1,
"linestyle": "-"
},
column_border_kw={
"linewidth": 1,
"linestyle": "-"
},
).autoset_fontcolors(colnames=["OFF", "DEF"])
-------- End --------
推荐👇同名微信视频号
图解Pandas
图文00-内容框架介绍 | 图文01-数据结构介绍 | 图文02-创建数据对象 | 图文03-操作Excel文件 | 图文04-常见的数据访问 | 图文05-常见的数据运算 | 图文06-常见的数学计算 | 图文07-常见的数据统计 | 图文08-常见的数据筛选 | 图文09-常见的缺失值处理 | 图文10-数据合并操作 | 图文11-Groupby分组操作