上周跟一位读者小刘(化名)交流完,我的心情久久不能平静。
小刘的起点比大多数人都低,他出生于一个父母离异的农村家庭,由爷爷奶奶带大,爷爷不喜欢他,只有奶奶一直支持和相信他。从小生活条件非常艰苦,因为交不起学费,初中差点没毕业,后来奶奶跟亲戚借钱供他念到了技校毕业。
技校毕业就去了南方工厂打工,临走前姑姑偷偷塞给他300块路费。小刘很能吃苦,鞋子破了舍不得买,脚经常被雨水泡得白白的,他努力打工,从不请假。
他知道工厂的工作不能干一辈子,想要出人头地必须继续读书,工作之余他报了成人高考,省吃俭用6年,攒够了学费,毅然离开了工厂,继续他的学业。
2012年自考大专毕业后,他来到上海从事安卓开发的工作,后来转做大数据开发。职场当中,由于工作非常努力,几乎在每家公司都是同一批人里最出色的,也不断获得升职加薪,期间还念了专升本,进一步提升学历。
2020年,他决定出国念研究生,继续在学业上精进。
在上海打拼多年,通过自己的努力,买房买车,已经获得了世俗意义上的成功。
许多当代年轻人常常抱怨:“时代红利没有了”、“努力无用”、“不如躺平”,一部分人开始选择自暴自弃。相比之下,小刘身上体现了这个时代下,年轻人少有的一股拼劲。
讲完了小刘的故事,K哥有几点感触分享给大家:
1、摆脱“原生家庭引力”,向上生长
有一句流传非常广的话,叫做:“幸福的童年治愈一生,不幸的童年用一生来治愈。” K哥对这个说法是不认同的,原生家庭对一个人的影响当然非常的大,但是并不是无法改变的。
小刘的童年是不幸的,但是他从来没有停止过与命运的抗争,他明白起点并不是终点,即使是技校毕业进工厂,他也利用业余时间提升学历,把辛苦挣到的工资用来投资自己,而不是像同龄人那样用来挥霍。
2、不要给你的人生设限
有一些年轻人觉得自己生不逢时,相比70、80后,他们既没有享受到互联网红利,也没享受到房产红利、股市红利,他们觉得自己的人生没有希望了,成就怎么都比不过70、80后了。
这是一种典型的给自己设限的思维,K哥经常说,每个时代有每个时代的机会,我们要具备抓住机会的能力。当下红利行业并不少,短视频、新能源汽车、高端制造、软件国产化、AI应用等等,这些都是风口行业。
关键在于,你是否具备这些风口行业所要求的稀缺技能。
3、比“阶层固化”更可怕的是,认知固化
当今时代还有一种论调认为阶层已经固化了,努力没有意义了,中国正在走日本、韩国的发展道路。
虽然有迹象表明我国开始进入“K型时代”,即:社会财富分配的“二八法则”在加剧,富人资产增长速度越来越快,而穷人资产增长速度越来越慢。但是,K哥个人认为这只是当前经济增长进入了一个新的阶段,即“康波周期”,我们处于第五次“康波周期”的萧条时期。
这个时期最重要的就是信心,对国家有信心,对行业发展有信心。
所以,比阶层固化更可怕的是,认知固化。不要去为那些你改变不了的事情而焦虑,焦虑最主要的原因就是对事情本身的认知太少、行动太少。
小刘一路走来,很少提到焦虑,就是因为他一直在路上,不断学习提升认知,不断努力付出行动。他深知,工作中的焦虑,就在工作中还回去,胡思乱想解决不了任何问题。
4、“work super hard!”
马斯克在一次给大学毕业生的演讲中,给即将走上工作岗位的他们提了几点建议,其中有一条“work super
hard!”,翻译过来就是,要付出“高效而可怕的勤奋”。
就像小刘那样,他的工作已经非常辛苦了,但是他知道自己起点低,只能用超越他人的勤奋来弥补。
稻盛和夫讲过一个人生成功方程式:人生/工作的结果 = 热情 × 思维方式 × 能力
其中的热情,就是指付出超越常人的努力,成为一个自然型人才,而不是阻燃型人才,这样你的人生才有可能发生改变。
5、无比强大的心力
从某种意义上来说,小刘是个牛人,他拥有超越普通人的强大心力,否则是没有办法支撑他走到今天。
有句话很土,但是很有道理:“想成功,先发疯,不顾一切向前冲。”
想要成事,你必须具备强大到混蛋的心力,才能在这个浮躁的世界里,抵挡风雨,抵抗诱惑。
强大的心力,不是说不会受伤,而是拥有极强的自我疗愈的能力。就像余华说的:“在夜深人静的时候,把心掏出来,自己缝缝补补,然后睡一觉,醒来又是信心百倍。”
无人问津也好,技不如人也罢,你都要静下心来,自己该干什么就干什么,而不是让烦躁和焦虑毁掉你本就不多的热情和定力。心可以碎,手不能停,该干什么干什么,在崩溃中继续前进,才是一个成年人的素养。
与你共勉。
-------- End --------
推荐👇同名微信视频号
图解Pandas
图文00-内容框架介绍 | 图文01-数据结构介绍 | 图文02-创建数据对象 | 图文03-操作Excel文件 | 图文04-常见的数据访问 | 图文05-常见的数据运算 | 图文06-常见的数学计算 | 图文07-常见的数据统计 | 图文08-常见的数据筛选 | 图文09-常见的缺失值处理 | 图文10-数据合并操作 | 图文11-Groupby分组操作