图的基本概念
定义:若用点表示研究的对象,用边表示这些对象之间的联系,则图G可以定义为点和边的集合,记作G=(V,E),其中V—点集,E—边集
端点:若有边e可表示为e=vivj,称vi和vj是边e的端点,反之称边e为vi和vj的关联边。若点vi、vj与同一条边关联,称点vi和vj相邻;若边ei和ej具有公共端点,称边ei和ej相邻。
环:如果边e的两个端点相重,称该边为环。如e1
多重边:如果两点之间的边多于一条,称为多重边。如e4和e5
简单图:无环、无多重边的图
有向图:图中的边是有方向的
无向图:图中的边没有方向
次(度):与某一个点vi相关联的边的数目称为点vi的度,记作d(vi),如d(v1)=4,d(v3)=5,d(v5)=1
奇度点:度为奇数的点,d(v3)=5
偶度点:度为偶数的点,d(v2)=4
悬挂点:度为1的点,d(v5)=1
孤立点:度为0的点
入度:在有向图中,以a为终点的边的条数称为a的入度,记作deg-(a)或d-(a)
出度:在有向图中,以a为始点的边的条数称为a的出度,记作deg+(a)或d+(a)
d-(v1)=3,d-(v2)=0,d(v3)=3,d-(v4)=3
d+(v1)=2,d+(v2)=3,d+(v3)=2,d+(v4)=2
握手定理:设无向图G(V,E),有n个顶点,m条边,则G中所有顶点的度之和等于m的两倍。即Σd(vi) = 2m
推论:无向图中度为奇数的顶点个数恰有偶数个
定理:设有向图D(V,E)有n个顶点,m条边,则G中所有顶点的入度之和等于所有顶点的出度之和,也等于m。Σd+(vi) = Σd-(vi) = m
例:空间中不可能有这样的多面体存在,他的面数是奇数,而且每个面由奇数条线段组成。
证明:如果有这样的多面体,以此多面体的面集合为顶点集构造一个图G,当且仅当两个面有公共边界时,在相应的两顶点之间连一条边,于是G有奇数个顶点,且每个顶点都为奇点,与定理(度为奇数的顶点个数恰有偶数个)矛盾,故不存在这样的多面体。
特殊的图
完全图
二部图
若能将无向图G=(V,E)的顶点集V划分成两个不相交的非空子集V1和V2,使得G中的任何一条边的两个端点一个属于V1,另一个属于V2,则称G为二部图(或偶图),记作G=(XUY,E),X,Y称为G的一个划分(二分类)
完全二部图
在简单二部图G(XUY,E)中,若X的每个顶点与Y的每个顶点有边连接,则称G为完全二部图;若|X|=m,|Y|=n,则记此完全二部图为Km,n。特别地,K1,n称为星
-
路、圈、连通- 途径:图G中一个顶点和边交替出现的有限非空序列 v1e2v2e4v3e7v4e7v3e5v2 e6v4
- 迹:各边相异的途径 v1 e2 v2 e4 v3 e7v4 e6 v2 e5v3 e8 v5
- 路:各顶点相异的迹 v1 e2 v2 e4 v3 e7v4
- 闭途径:具有正的长且起点和终点相同的途径 v1e2v2e4v3e7v4e7v3e5v2e6v4e7v3e3v1
- 闭迹:也称回路 v2 e4 v3 e7v4 e6 v2 e5 v3 e3 v1 e2 v2
- 圈:起点和终点相同的路 有n个顶点的一个圈记作Cn v1 e2 v2 e6 v4 e7 v3 e3 v1
- 连通图:图G中任二顶点都连通
- 图的分支:若图G的顶点集V(G)可划分为若干个非空子集V1,V2,V3…,使得两顶点属于同一子集当且仅当他们在G中连通,则称每个子图G(Vi)为图G的一个分支(i=1,2,3…)
- 欧拉回路G=(V,E),称包含E中所有边的回路为欧拉回路
欧拉定理:无向图存在欧拉回路的充要条件是:a.图是连通的,b.图中奇次顶点个数是0个
中国邮政问题:一个邮递员从邮局出发,然后再返回邮局,如果他必须走过他所管辖的每条街至少一次,问如何选择路线可使路程最短?
解:如果G中全部顶点都为偶度点,则Euler闭迹存在,若是奇度点,则奇度点的个数必为偶数,于是可组成奇度点对,在其间增加重边,使重边的权等于原来边的权,可使G中全部顶点变为偶度点,这时Euler闭迹存在
x-a-b-x-a-d-b-c-d-c-x 总里程24
平面图
定义:G(V,E)是一个无向图,如果能够把G的所有结点和边画在平面上,且使得任何两条边除了端点外没有其他的交点
任何一个包含非平面图作为部分结构的图也都是非平面图
设G=(V,E)是平面图,当且仅当G不含有K5和K3,3或他们的划分作为子图
面:设图G=(V,E)是一个连通平面图,图中各边界定的区域称为平面图的面
边界:界定面的闭的路径称为边界
度(次数):面r的边界长度称为面r的度,记作deg(r),又称为r的次数
deg(r1)=3 deg(r2)=3 deg(r3)=5 deg(r4)=4 deg(r5)=3
deg(r1)+ deg(r2)+deg(r3)+ deg(r4)+ deg(r5)=18
定理:有限平面图中,面的次数(度)之和等于其边数的两倍。
欧拉定理:设G为平面连通图,v为顶点数,e为边数,r为面数,那么欧拉公式成立 v-e+r=2
例:已知一个平面图中结点数v=10,每个面均由4条边围成,求该平面图的边数和面数。
解:因每个面的次数均为4,则4r=2e,即2r=e,又v=10,代入欧拉公式v-e+r=2,有10-2r+r=2,解得r=8,e=2r=16
树形图与最小支撑树
-
树:无圈的连通图
性质:(1).任何树上必存在次为1的点。(2).n个顶点的树必有n-1条边。(3).树中任意两个顶点之间,恰有且仅有一条链。(4).树连通,但去掉任一条边,必变为不连通。(5).树无回圈,但不相邻的两个点之间加一条边,恰得到一个圈
支撑树
一个图H的每个顶点和每条边都在图G中,则H是G的一个子图。如果H的顶点和G的顶点一样,则H是G的支撑子图。如果H是G的支撑子图,且是树形图,则H是G的支撑树。
子图+顶点相同=支撑子图
转自人民大学张同学笔记