Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification阅读笔记

本文是关于Attention-Based Bidirectional Long Short-Term Memory Networks (Att-BLSTM) 在关系分类任务中的阅读笔记。模型包括输入层、嵌入层、双向LSTM层、注意力层和输出层。在注意力层中,对LSTM的输出进行非线性激活以计算权重。实验部分使用SemEval-2010数据集,参数调整涉及词嵌入大小、优化器、学习率、批次大小和dropout率,评估指标为macro-F1score。
摘要由CSDN通过智能技术生成

Att-BLSTM

Model

模型主要包括五部分:

  1. Input layer
  2. Embedding layer
  3. Lstm layer
  4. Attention layer
  5. Output layer

Word Embedding

没啥好说的…

Bidirectional Network

Bi-LSTM结构, 最后输出

Attention

Attention部分, 先对LSTM输出做非线性激活, 然后计算attention权重.

最终的句表示:

Classifying

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>