暑期实习及提前批NLP岗面经记录
旷视
算法题
- 矩阵最短路径
- 窗口内最大值、求和
- 扔鸡蛋
搜狐
问题
- batch normalization原理, 作用
- 证明在n>=2个人中必有两个人他们在这n个人中朋友数相等
算法题
- 求一个数开方是不是整数(二分查找)
- 求二叉树的最大路径和(leetcode 124)
- 链表反转
- 池子盛水(leetcode 11)
京东
问题
- cnn为什么有效?
- 平移不变性, 旋转不变性原理?
- RNN为什么会梯度消失? lstm为什么能解决梯度消失? lstm能解决梯度爆炸吗?
算法题
- 螺旋打印三角形(类似剑指offer 29)
- 在旋转有序数组中搜索(leetcode 33)
网易
原理
- attention怎么做?
- lr svm推导, 有什么区别?
算法题
神州泰岳
一共两轮技术面
原理
- lr和svm区别
- cnn(lstm)参数量计算, 内存计算
- lstm参数量计算
- transformer中position embedding作用? cnn+position embedding效果会怎样? lstm需要position embedding吗?
- 为什么transformer向量维度设为768这么大?而不像常用的词向量100维或者300维?(multi-head时要拆成更小的)
- transformer multi-head作用是什么?
- 为什么要用激活函数, 不用的后果是什么(非线性)
- 为什么lstm用tanh, tanh与relu和sigmoid的比较
sigmoid导数范围[0, 0.25], 收敛速度慢.
tanh收敛速度快, 但是激活区间小.
relu收敛速度快, 求导计算也快

这篇博客记录了作者作为NLP实习生面试的历程,涉及公司包括旷视、搜狐、京东、网易等。文章详细介绍了面试中遇到的算法题,如矩阵最短路径、CNN原理、RNN梯度消失问题,以及各种数据结构和算法的应用。还讨论了深度学习的相关原理,如Attention机制、LSTM和Transformer的特点。
最低0.47元/天 解锁文章
779

被折叠的 条评论
为什么被折叠?



