暑期实习及提前批NLP岗面经记录(头条, oppo, 作业帮....)

这篇博客记录了作者作为NLP实习生面试的历程,涉及公司包括旷视、搜狐、京东、网易等。文章详细介绍了面试中遇到的算法题,如矩阵最短路径、CNN原理、RNN梯度消失问题,以及各种数据结构和算法的应用。还讨论了深度学习的相关原理,如Attention机制、LSTM和Transformer的特点。
摘要由CSDN通过智能技术生成

旷视

算法题

  1. 矩阵最短路径
  2. 窗口内最大值、求和
  3. 扔鸡蛋

搜狐

问题

  1. batch normalization原理, 作用
  2. 证明在n>=2个人中必有两个人他们在这n个人中朋友数相等

算法题

  1. 求一个数开方是不是整数(二分查找)
  2. 求二叉树的最大路径和(leetcode 124)
  3. 链表反转
  4. 池子盛水(leetcode 11)

京东

问题

  1. cnn为什么有效?
  2. 平移不变性, 旋转不变性原理?
  3. RNN为什么会梯度消失? lstm为什么能解决梯度消失? lstm能解决梯度爆炸吗?

算法题

  1. 螺旋打印三角形(类似剑指offer 29)
  2. 在旋转有序数组中搜索(leetcode 33)

网易

原理

  1. attention怎么做?
  2. lr svm推导, 有什么区别?

算法题

  1. 最大连续子序列和(动态规划)
  2. 求k个有序数组包含每个数组至少一个元素的最小范围

神州泰岳

一共两轮技术面

原理

  1. lr和svm区别
  2. cnn(lstm)参数量计算, 内存计算
  3. lstm参数量计算
  4. transformer中position embedding作用? cnn+position embedding效果会怎样? lstm需要position embedding吗?
  5. 为什么transformer向量维度设为768这么大?而不像常用的词向量100维或者300维?(multi-head时要拆成更小的)
  6. transformer multi-head作用是什么?
  7. 为什么要用激活函数, 不用的后果是什么(非线性)
  8. 为什么lstm用tanh, tanh与relu和sigmoid的比较
    sigmoid导数范围[0, 0.25], 收敛速度慢.
    tanh收敛速度快, 但是激活区间小.
    relu收敛速度快, 求导计算也快
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>