MapReduce中的两表join几种方案简介

 MapReduce中的两表join几种方案简介

5人收藏此文章, 我要收藏发表于2个月前(2012-12-11 20:11) , 已有 91次阅读 ,共 0个评论

1. 概述

在传统数据库(如:MYSQL)中,JOIN操作是非常常见且非常耗时的。而在HADOOP中进行JOIN操作,同样常见且耗时,由于Hadoop的独特设计思想,当进行JOIN操作时,有一些特殊的技巧。

本文首先介绍了Hadoop上通常的JOIN实现方法,然后给出了几种针对不同输入数据集的优化方法。

2. 常见的join方法介绍

假设要进行join的数据分别来自File1和File2.

2.1 reduce side join

reduce side join是一种最简单的join方式,其主要思想如下:

在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签(tag),比如:tag=0表示来自文件File1,tag=2表示来自文件File2。即:map阶段的主要任务是对不同文件中的数据打标签。

在reduce阶段,reduce函数获取key相同的来自File1和File2文件的value list, 然后对于同一个key,对File1和File2中的数据进行join(笛卡尔乘积)。即:reduce阶段进行实际的连接操作。

2.2 map side join

之所以存在reduce side join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中。Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输。

Map side join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中。这样,我们可以将小表复制多份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录key/value,在hash table中查找是否有相同的key的记录,如果有,则连接后输出即可。

为了支持文件的复制,Hadoop提供了一个类DistributedCache,使用该类的方法如下:

(1)用户使用静态方法DistributedCache.addCacheFile()指定要复制的文件,它的参数是文件的URI(如果是HDFS上的文件,可以这样:hdfs://namenode:9000/home/XXX/file,其中9000是自己配置的NameNode端口号)。JobTracker在作业启动之前会获取这个URI列表,并将相应的文件拷贝到各个TaskTracker的本地磁盘上。(2)用户使用DistributedCache.getLocalCacheFiles()方法获取文件目录,并使用标准的文件读写API读取相应的文件。

2.3 SemiJoin

SemiJoin也叫半连接,是从分布式数据库中借鉴过来的方法。它的产生动机是:对于reduce side join,跨机器的数据传输量非常大,这成了join操作的一个瓶颈,如果能够在map端过滤掉不会参加join操作的数据,则可以大大节省网络IO。

实现方法很简单:选取一个小表,假设是File1,将其参与join的key抽取出来,保存到文件File3中,File3文件一般很小,可以放到内存中。在map阶段,使用DistributedCache将File3复制到各个TaskTracker上,然后将File2中不在File3中的key对应的记录过滤掉,剩下的reduce阶段的工作与reduce side join相同。

更多关于半连接的介绍,可参考:半连接介绍:http://wenku.baidu.com/view/ae7442db7f1922791688e877.html

2.4 reduce side join + BloomFilter

在某些情况下,SemiJoin抽取出来的小表的key集合在内存中仍然存放不下,这时候可以使用BloomFiler以节省空间。

BloomFilter最常见的作用是:判断某个元素是否在一个集合里面。它最重要的两个方法是:add() 和contains()。最大的特点是不会存在false negative,即:如果contains()返回false,则该元素一定不在集合中,但会存在一定的true negative,即:如果contains()返回true,则该元素一定可能在集合中。

因而可将小表中的key保存到BloomFilter中,在map阶段过滤大表,可能有一些不在小表中的记录没有过滤掉(但是在小表中的记录一定不会过滤掉),这没关系,只不过增加了少量的网络IO而已。

更多关于BloomFilter的介绍,可参考:http://blog.csdn.net/jiaomeng/article/details/1495500

3. 二次排序

在Hadoop中,默认情况下是按照key进行排序,如果要按照value进行排序怎么办?即:对于同一个key,reduce函数接收到的value list是按照value排序的。这种应用需求在join操作中很常见,比如,希望相同的key中,小表对应的value排在前面。

有两种方法进行二次排序,分别为:buffer and in memory sort和 value-to-key conversion。

对于buffer and in memory sort,主要思想是:在reduce()函数中,将某个key对应的所有value保存下来,然后进行排序。 这种方法最大的缺点是:可能会造成out of memory。

对于value-to-key conversion,主要思想是:将key和部分value拼接成一个组合key(实现WritableComparable接口或者调用setSortComparatorClass函数),这样reduce获取的结果便是先按key排序,后按value排序的结果,需要注意的是,用户需要自己实现Paritioner,以便只按照key进行数据划分。Hadoop显式的支持二次排序,在Configuration类中有个setGroupingComparatorClass()方法,可用于设置排序group的key值,具体参考:http://www.cnblogs.com/xuxm2007/archive/2011/09/03/2165805.html

4. 后记

最近一直在找工作,由于简历上写了熟悉Hadoop,所以几乎每个面试官都会问一些Hadoop相关的东西,而 Hadoop上Join的实现就成了一道必问的问题,而极个别公司还会涉及到DistributedCache原理以及怎样利用DistributedCache进行Join操作。为了更好地应对这些面试官,特整理此文章。


5. 参考资料

(1) 书籍《Data-Intensive Text Processing with MapReduce》 page 60~67 Jimmy Lin and Chris Dyer,University of Maryland, College Park

(2) 书籍《Hadoop In Action》page 107~131

(3) mapreduce的二次排序 SecondarySort:http://www.cnblogs.com/xuxm2007/archive/2011/09/03/2165805.html

(4) 半连接介绍:http://wenku.baidu.com/view/ae7442db7f1922791688e877.html

(5) BloomFilter介绍:http://blog.csdn.net/jiaomeng/article/details/1495500

(6)本文来自:http://dongxicheng.org/mapreduce/hadoop-join-two-tables/

————————————————————————————————————————————————

看完了上面的 hadoop 中 MR 常规 join 思路,下面我们来看一种比较极端的例子,大表 join 小表,而小表的大小在10M以下的情况:

之所以我这里说小表要限制10M以下,是因为我这里用到的思路是 :

file-》jar-》main String configuration -》configuration map HashMap

步骤:

1、从jar里面读取的文件内容以String的形式存在main方法的 configuration context 全局环境变量里

2、在map函数里读取 context 环境变量的字符串,然后split字符串组建小表成为一个HashMap

     这样一个大表关联小表的例子就ok了,由于context是放在namenode上的,而namenode对内存是有限制的,

所以你的小表文件不要太大,这样我们可以比较的方便的利用 context 做join了。

这种方式其实就是 2.2 map side join 的一种具体实现而已。

Talk is cheap, show you the code~

001 public class Test {
002  
003     public static class MapperClass extends
004             Mapper<LongWritable, Text, Text, Text> {
005  
006         Configuration config = null;
007         HashSet<String> idSet = new HashSet<String>();
008         HashMap<String, String> cityIdNameMap = new HashMap<String, String>();
009         Map<String, String> houseTypeMap = new HashMap<String, String>();
010  
011         public void setup(Context context) {
012             config = context.getConfiguration();
013             if (config == null)
014                 return;
015             String idStr = config.get("idStr");
016             String[] idArr = idStr.split(",");
017             for (String id : idArr) {
018                 idSet.add(id);
019             }
020  
021             String cityIdNameStr = config.get("cityIdNameStr");
022             String[] cityIdNameArr = cityIdNameStr.split(",");
023             for (String cityIdName : cityIdNameArr) {
024                 cityIdNameMap.put(cityIdName.split("\t")[0],
025                         cityIdName.split("\t")[1]);
026             }
027  
028             houseTypeMap.put("8""Test");
029  
030         }
031  
032         public void map(LongWritable key, Text value, Context context)
033                 throws IOException, InterruptedException {
034  
035             String[] info = value.toString().split("\\|");
036             String insertDate = info[InfoField.InsertDate].split(" ")[0]
037                     .split("-")[0]; // date: 2012-10-01
038             insertDate = insertDate
039                     + info[InfoField.InsertDate].split(" ")[0].split("-")[1]; // date:201210
040  
041             String userID = info[InfoField.UserID]; // userid
042             if (!idSet.contains(userID)) {
043                 return;
044             }
045  
046             String disLocalID = "";
047             String[] disLocalIDArr = info[InfoField.DisLocalID].split(",");
048             if (disLocalIDArr.length >= 2) {
049                 disLocalID = disLocalIDArr[1];
050             else {
051                 try {
052                     disLocalID = disLocalIDArr[0];
053                 catch (Exception e) {
054                     e.printStackTrace();
055                     return;
056                 }
057             }
058             String localValue = cityIdNameMap.get(disLocalID);
059             disLocalID = localValue == null ? disLocalID : localValue; // city
060  
061             String[] cateIdArr = info[InfoField.CateID].split(",");
062             String cateId = "";
063             String secondType = "";
064             if (cateIdArr.length >= 3) {
065                 cateId = cateIdArr[2];
066                 if (houseTypeMap.get(cateId) != null) {
067                     secondType = houseTypeMap.get(cateId); // secondType
068                 else {
069                     return;
070                 }
071             else {
072                 return;
073             }
074  
075             String upType = info[InfoField.UpType];
076             String outKey = insertDate + "_" + userID + "_" + disLocalID + "_"
077                     + secondType;
078             String outValue = upType.equals("0") ? "1_1" "1_0";
079             context.write(new Text(outKey), new Text(outValue));
080         }
081     }
082  
083     public static class ReducerClass extends
084             Reducer<Text, Text, NullWritable, Text> {
085  
086         public void reduce(Text key, Iterable<Text> values, Context context)
087                 throws IOException, InterruptedException {
088             int pv = 0;
089             int uv = 0;
090  
091             for (Text val : values) {
092                 String[] tmpArr = val.toString().split("_");
093                 pv += Integer.parseInt(tmpArr[0]);
094                 uv += Integer.parseInt(tmpArr[1]);
095             }
096  
097             String outValue = key + "_" + pv + "_" + uv;
098             context.write(NullWritable.get(), new Text(outValue));
099  
100         }
101     }
102  
103     public String getResource(String fileFullName) throws IOException {
104         // 返回读取指定资源的输入流
105         InputStream is = this.getClass().getResourceAsStream(fileFullName);
106         BufferedReader br = new BufferedReader(new InputStreamReader(is));
107         String s = "";
108         String res = "";
109         while ((s = br.readLine()) != null)
110             res = res.equals("") ? s : res + "," + s;
111         return res;
112     }
113  
114     public static void main(String[] args) throws IOException,
115             InterruptedException, ClassNotFoundException {
116         Configuration conf = new Configuration();
117         String[] otherArgs = new GenericOptionsParser(conf, args)
118                 .getRemainingArgs();
119         if (otherArgs.length != 2) {
120             System.exit(2);
121         }
122  
123         String idStr = new Test().getResource("userIDList.txt");
124         String cityIdNameStr = new Test().getResource("cityIdName.txt");
125         conf.set("idStr", idStr);
126         conf.set("cityIdNameStr", cityIdNameStr);
127         Job job = new Job(conf, "test01");
128         // job.setInputFormatClass(TextInputFormat.class);
129         job.setJarByClass(Test.class);
130         job.setMapperClass(Test.MapperClass.class);
131         job.setReducerClass(Test.ReducerClass.class);
132         job.setNumReduceTasks(25);
133         job.setOutputKeyClass(Text.class);
134         job.setOutputValueClass(Text.class);
135         job.setMapOutputKeyClass(Text.class);
136         job.setMapOutputValueClass(Text.class);
137  
138         FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
139         org.apache.hadoop.mapreduce.lib.output.FileOutputFormat.setOutputPath(
140                 job, new Path(otherArgs[1]));
141  
142         System.exit(job.waitForCompletion(true) ? 0 1);
143     }
144 }


说明:

1、getResource() 方法指定了可以从jar包中读取配置文件,并拼接成一个String返回。

2、setup() 方法起到一个mapreduce前的初始化的工作,他的作用是从 context 中

获取main中存入的配置文件字符串,并用来构建一个hashmap,放在map外面,

每个node上MR前只被执行一次。


推荐阅读:

使用HBase的MAP侧联接

 http://blog.sina.com.cn/s/blog_ae33b83901016lkq.html 


PS:关于如何从jar包中读取配置文件,请参考:

(1)深入jar包:从jar包中读取资源文件      http://www.iteye.com/topic/483115

 (2)读取jar内资源文件      http://heipark.iteye.com/blog/1439114

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值